DSPIC30F6010A-20E/PT Microchip Technology, DSPIC30F6010A-20E/PT Datasheet - Page 114

no-image

DSPIC30F6010A-20E/PT

Manufacturer Part Number
DSPIC30F6010A-20E/PT
Description
IC,DSP,16-BIT,CMOS,TQFP,80PIN,PLASTIC
Manufacturer
Microchip Technology
Series
dsPIC™ 30Fr

Specifications of DSPIC30F6010A-20E/PT

Rohs Compliant
YES
Core Processor
dsPIC
Core Size
16-Bit
Speed
20 MIPS
Connectivity
CAN, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, Motor Control PWM, QEI, POR, PWM, WDT
Number Of I /o
68
Program Memory Size
144KB (48K x 24)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.5 V ~ 5.5 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 125°C
Package / Case
80-TFQFP
Package
80TQFP
Device Core
dsPIC
Family Name
dsPIC30
Maximum Speed
20 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
68
Interface Type
CAN/I2C/SPI/UART
On-chip Adc
16-chx10-bit
Number Of Timers
5
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
DM300019 - BOARD DEMO DSPICDEM 80L STARTERXLT80PT3 - SOCKET TRAN ICE 80MQFP/TQFPAC164320 - MODULE SKT MPLAB PM3 80TQFPAC30F007 - MODULE SKT FOR DSPIC30F 80TQFPDM300020 - BOARD DEV DSPICDEM MC1 MOTORCTRL
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
DSPIC30F6010A-20E/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
Part Number:
DSPIC30F6010A-20E/PT
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
dsPIC30F6010A/6015
As per the I
400 kHz. However, the user can specify any baud rate
up to 1 MHz. I2CBRG values of ‘0’ or ‘1’ are illegal.
EQUATION 17-1:
17.12.4
Clock arbitration occurs when the master de-asserts
the SCL pin (SCL allowed to float high) during any
receive, transmit, or Restart/Stop condition. When the
SCL pin is allowed to float high, the Baud Rate
Generator (BRG) is suspended from counting until the
SCL pin is actually sampled high. When the SCL pin is
sampled high, the Baud Rate Generator is reloaded
with the contents of I2CBRG and begins counting. This
ensures that the SCL high time will always be at least
one BRG rollover count in the event that the clock is
held low by an external device.
17.12.5
Multi-Master operation support is achieved by bus
arbitration. When the master outputs address/data bits
onto the SDA pin, arbitration takes place when the
master outputs a ‘1’ on SDA, by letting SDA float high
while another master asserts a ‘0’. When the SCL pin
floats high, data should be stable. If the expected data
on SDA is a ‘1’ and the data sampled on the SDA
pin = 0, then a bus collision has taken place. The
master will set the MI2CIF pulse and reset the master
portion of the I
If a transmit was in progress when the bus collision
occurred, the transmission is halted, the TBF flag is
cleared, the SDA and SCL lines are de-asserted, and a
value can now be written to I2CTRN. When the user
services the I
Routine, if the I
user can resume communication by asserting a Start
condition.
If a Start, Restart, Stop or Acknowledge condition was
in progress when the bus collision occurred, the
condition is aborted, the SDA and SCL lines are
de-asserted, and the respective control bits in the
I2CCON register are cleared to 0. When the user
services the bus collision Interrupt Service Routine,
and if the I
communication by asserting a Start condition.
DS70150D-page 114
I2CBRG
CLOCK ARBITRATION
MULTI-MASTER COMMUNICATION,
BUS COLLISION AND BUS
ARBITRATION
2
2
C bus is free, the user can resume
C standard, F
2
2
C port to its Idle state.
2
C bus is free (i.e., the P bit is set), the
C master event Interrupt Service
=
------------ -
F
F
SCL
SERIAL CLOCK RATE
CY
-------------------------- -
1 111 111
SCL
,
F
CY
may be 100 kHz or
,
1
The Master will continue to monitor the SDA and SCL
pins, and if a Stop condition occurs, the MI2CIF bit will
be set.
A write to the I2CTRN will start the transmission of data
at the first data bit, regardless of where the transmitter
left off when bus collision occurred.
In a Multi-Master environment, the interrupt generation
on the detection of Start and Stop conditions allows the
determination of when the bus is free. Control of the I
bus can be taken when the P bit is set in the I2CSTAT
register, or the bus is Idle and the S and P bits are
cleared.
17.13 I
17.13.1
When the device enters Sleep mode, all clock sources
to the module are shutdown and stay at logic ‘0’. If
Sleep occurs in the middle of a transmission, and the
state machine is partially into a transmission as the
clocks stop, then the transmission is aborted. Similarly,
if Sleep occurs in the middle of a reception, then the
reception is aborted.
17.13.2
For the I
stop on Idle or continue on Idle. If I2CSIDL = 0, the
module will continue operation on assertion of the Idle
mode. If I2CSIDL = 1, the module will stop on Idle.
2
Sleep and Idle Modes
2
C, the I2CSIDL bit selects if the module will
C Module Operation During CPU
I
SLEEP MODE
I
MODE
2
2
C OPERATION DURING CPU
C OPERATION DURING CPU IDLE
© 2008 Microchip Technology Inc.
2
C

Related parts for DSPIC30F6010A-20E/PT