MC9S12XDT512CAA Freescale, MC9S12XDT512CAA Datasheet - Page 1049

no-image

MC9S12XDT512CAA

Manufacturer Part Number
MC9S12XDT512CAA
Description
Manufacturer
Freescale
Datasheet

Specifications of MC9S12XDT512CAA

Cpu Family
HCS12
Device Core Size
16b
Frequency (max)
40MHz
Interface Type
CAN/I2C/SCI/SPI
Total Internal Ram Size
32KB
# I/os (max)
59
Number Of Timers - General Purpose
12
Operating Supply Voltage (typ)
2.5/5V
Operating Supply Voltage (max)
2.75/5.5V
Operating Supply Voltage (min)
2.35/3.15V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
80
Package Type
PQFP
Program Memory Type
Flash
Program Memory Size
512KB
Lead Free Status / RoHS Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12XDT512CAA
Manufacturer:
FREESCALE
Quantity:
2 235
Part Number:
MC9S12XDT512CAA
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12XDT512CAA
Manufacturer:
FREESCALE
Quantity:
2 235
Part Number:
MC9S12XDT512CAAR
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
All EDHI and EDLO bits are readable and writable in special modes.
25.4
25.4.1
Write operations are used to execute program, erase, erase verify, sector erase abort, and sector modify
algorithms described in this section. The program, erase, and sector modify algorithms are controlled by
a state machine whose timebase, EECLK, is derived from the oscillator clock via a programmable divider.
The command register as well as the associated address and data registers operate as a buffer and a register
(2-stage FIFO) so that a second command along with the necessary data and address can be stored to the
buffer while the first command is still in progress. Buffer empty as well as command completion are
signalled by flags in the EEPROM status register with interrupts generated, if enabled.
The next sections describe:
25.4.1.1
Prior to issuing any EEPROM command after a reset, the user is required to write the ECLKDIV register
to divide the oscillator clock down to within the 150 kHz to 200 kHz range. Since the program and erase
timings are also a function of the bus clock, the ECLKDIV determination must take this information into
account.
If we define:
then ECLKDIV register bits PRDIV8 and EDIV[5:0] are to be set as described in
For example, if the oscillator clock frequency is 950 kHz and the bus clock frequency is 10 MHz,
ECLKDIV bits EDIV[5:0] should be set to 0x04 (000100) and bit PRDIV8 set to 0. The resulting EECLK
frequency is then 190 kHz. As a result, the EEPROM program and erase algorithm timings are increased
over the optimum target by:
If the oscillator clock frequency is 16 MHz and the bus clock frequency is 40 MHz, ECLKDIV bits
EDIV[5:0] should be set to 0x0A (001010) and bit PRDIV8 set to 1. The resulting EECLK frequency is
Freescale Semiconductor
1. How to write the ECLKDIV register
2. Command write sequences to program, erase, erase verify, sector erase abort, and sector modify
3. Valid EEPROM commands
4. Effects resulting from illegal EEPROM command write sequences or aborting EEPROM
operations on the EEPROM memory
operations
ECLK as the clock of the EEPROM timing control block
Tbus as the period of the bus clock
INT(x) as taking the integer part of x (e.g., INT(4.323)=4)
Functional Description
EEPROM Command Operations
Writing the ECLKDIV Register
MC9S12XDP512 Data Sheet, Rev. 2.21
200 190
200 100
=
Chapter 25 2 Kbyte EEPROM Module (S12XEETX2KV1)
5%
Figure
25-17.
1051

Related parts for MC9S12XDT512CAA