ATMEGA128A-AUR Atmel, ATMEGA128A-AUR Datasheet - Page 21

MCU AVR 128K FLASH 16MHZ 64TQFP

ATMEGA128A-AUR

Manufacturer Part Number
ATMEGA128A-AUR
Description
MCU AVR 128K FLASH 16MHZ 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128A-AUR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128A-AUR
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATMEGA128A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128A-AUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
7.3
7.3.1
7.3.2
7.3.3
8151H–AVR–02/11
EEPROM Data Memory
EEPROM Read/Write Access
EEPROM Write During Power-down Sleep Mode
Preventing EEPROM Corruption
Figure 7-3.
The Atmel
separate data space, in which single bytes can be read and written. The EEPROM has an
endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the
CPU is described in the following, specifying the EEPROM Address Registers, the EEPROM
Data Register, and the EEPROM Control Register.
“Memory Programming” on page 291
in SPI, JTAG, or Parallel Programming mode
The EEPROM access registers are accessible in the I/O space.
The write access time for the EEPROM is given in
lets the user software detect when the next byte can be written. If the user code contains instruc-
tions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, V
period of time to run at a voltage lower than specified as minimum for the clock frequency used.
See “Preventing EEPROM Corruption” on page 21.
situations.
In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.
When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction is
executed. When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed.
When entering Power-down sleep mode while an EEPROM write operation is active, the
EEPROM write operation will continue, and will complete before the write access time has
passed. However, when the write operation is completed, the Oscillator continues running, and
as a consequence, the device does not enter Power-down entirely. It is therefore recommended
to verify that the EEPROM write operation is completed before entering Power-down.
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
®
CC
AVR
is likely to rise or fall slowly on Power-up/down. This causes the device for some
On-chip Data SRAM Access Cycles
®
ATmega128A contains 4Kbytes of data EEPROM memory. It is organized as a
Address
CC,
clk
Data
Data
WR
CPU
RD
the EEPROM data can be corrupted because the supply voltage is
Compute Address
T1
Memory access instruction
contains a detailed description on EEPROM programming
Address valid
T2
for details on how to avoid problems in these
Table
Next instruction
T3
7-2. A self-timing function, however,
ATmega128A
21

Related parts for ATMEGA128A-AUR