ATMEGA128A-AUR Atmel, ATMEGA128A-AUR Datasheet - Page 247

MCU AVR 128K FLASH 16MHZ 64TQFP

ATMEGA128A-AUR

Manufacturer Part Number
ATMEGA128A-AUR
Description
MCU AVR 128K FLASH 16MHZ 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128A-AUR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
*
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128A-AUR
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATMEGA128A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128A-AUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
23.9.2
8151H–AVR–02/11
ADCSRA - ADC Control and Status Register A
Table 23-4.
Note:
• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.
• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running mode,
write this bit to one to start the first conversion. The first conversion after ADSC has been written
after the ADC has been enabled, or if ADSC is written at the same time as the ADC is enabled,
will take 25 ADC clock cycles instead of the normal 13. This first conversion performs initializa-
tion of the ADC.
ADSC will read as one as long as a conversion is in progress. When the conversion is complete,
it returns to zero. Writing zero to this bit has no effect.
• Bit 5 – ADFR: ADC Free Running Select
When this bit is written to one, the ADC operates in Free Running mode. In this mode, the ADC
samples and updates the data registers continuously. Writing zero to this bit will terminate Free
Running mode.
• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the data registers are updated. The ADC
Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set. ADIF is
cleared by hardware when executing the corresponding interrupt handling vector. Alternatively,
ADIF is cleared by writing a logical one to the flag. Beware that if doing a read-modify-write on
ADCSRA, a pending interrupt can be disabled. This also applies if the SBI and CBI instructions
are used.
• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete Inter-
rupt is activated.
Bit
Read/Write
Initial Value
MUX4:0
11010
11011
11100
11101
11110
11111
1. Can be used for offset calibration.
Single Ended
Input
1.23V (V
0V (GND)
Input Channel and Gain Selections (Continued)
ADEN
R/W
7
0
BG
)
ADSC
R/W
6
0
Positive Differential
Input
ADC2
ADC3
ADC4
ADC5
N/A
ADFR
R/W
5
0
ADIF
R/W
4
0
ADIE
R/W
3
0
Negative Differential
Input
ADC2
ADC2
ADC2
ADC2
ADPS2
R/W
2
0
ADPS1
ATmega128A
R/W
1
0
ADPS0
R/W
0
0
Gain
1x
1x
1x
1x
ADCSRA
247

Related parts for ATMEGA128A-AUR