AT91SAM7S64C-AU Atmel, AT91SAM7S64C-AU Datasheet - Page 243

IC ARM7 MCU 32BIT 64K 64LQFP

AT91SAM7S64C-AU

Manufacturer Part Number
AT91SAM7S64C-AU
Description
IC ARM7 MCU 32BIT 64K 64LQFP
Manufacturer
Atmel
Series
AT91SAMr
Datasheet

Specifications of AT91SAM7S64C-AU

Package / Case
64-LQFP
Voltage - Supply (vcc/vdd)
1.65 V ~ 1.95 V
Operating Temperature
-40°C ~ 85°C
Speed
55MHz
Number Of I /o
32
Core Processor
ARM7
Program Memory Type
FLASH
Ram Size
16K x 8
Program Memory Size
64KB (64K x 8)
Data Converters
A/D 8x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, DMA, POR, PWM, WDT
Connectivity
I²C, SPI, SSC, UART/USART, USB
Core Size
16/32-Bit
Core
ARM7TDMI
Package
64LQFP
Device Core
ARM7TDMI
Family Name
AT91
Maximum Speed
55 MHz
Operating Supply Voltage
1.8|3.3 V
Data Bus Width
32 Bit
Number Of Programmable I/os
32
Interface Type
SPI/TWI/USART/USB
On-chip Adc
8-chx10-bit
Number Of Timers
3
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details
Other names
AT91SAM7S64B-AU::AT91SAM7S64B-AU

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT91SAM7S64C-AU
Manufacturer:
ATMEL
Quantity:
4 300
Part Number:
AT91SAM7S64C-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT91SAM7S64C-AU
Manufacturer:
ATMEL
Quantity:
1 005
Part Number:
AT91SAM7S64C-AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Part Number:
AT91SAM7S64C-AU-999
Manufacturer:
Atmel
Quantity:
10 000
27.4.1
27.4.2
27.4.3
27.4.4
6175K–ATARM–30-Aug-10
Pull-up Resistor Control
I/O Line or Peripheral Function Selection
Peripheral A or B Selection
Output Control
Each I/O line is designed with an embedded pull-up resistor. The pull-up resistor can be enabled
or disabled by writing respectively PIO_PUER (Pull-up Enable Register) and PIO_PUDR (Pull-
up Disable Resistor). Writing in these registers results in setting or clearing the corresponding bit
in PIO_PUSR (Pull-up Status Register). Reading a 1 in PIO_PUSR means the pull-up is dis-
abled and reading a 0 means the pull-up is enabled.
Control of the pull-up resistor is possible regardless of the configuration of the I/O line.
After reset, all of the pull-ups are enabled, i.e. PIO_PUSR resets at the value 0x0.
When a pin is multiplexed with one or two peripheral functions, the selection is controlled with
the registers PIO_PER (PIO Enable Register) and PIO_PDR (PIO Disable Register). The regis-
ter PIO_PSR (PIO Status Register) is the result of the set and clear registers and indicates
whether the pin is controlled by the corresponding peripheral or by the PIO Controller. A value of
0 indicates that the pin is controlled by the corresponding on-chip peripheral selected in the
PIO_ABSR (AB Select Status Register). A value of 1 indicates the pin is controlled by the PIO
controller.
If a pin is used as a general purpose I/O line (not multiplexed with an on-chip peripheral),
PIO_PER and PIO_PDR have no effect and PIO_PSR returns 1 for the corresponding bit.
After reset, most generally, the I/O lines are controlled by the PIO controller, i.e. PIO_PSR
resets at 1. However, in some events, it is important that PIO lines are controlled by the periph-
eral (as in the case of memory chip select lines that must be driven inactive after reset or for
address lines that must be driven low for booting out of an external memory). Thus, the reset
value of PIO_PSR is defined at the product level, depending on the multiplexing of the device.
The PIO Controller provides multiplexing of up to two peripheral functions on a single pin. The
selection is performed by writing PIO_ASR (A Select Register) and PIO_BSR (Select B Regis-
ter). PIO_ABSR (AB Select Status Register) indicates which peripheral line is currently selected.
For each pin, the corresponding bit at level 0 means peripheral A is selected whereas the corre-
sponding bit at level 1 indicates that peripheral B is selected.
Note that multiplexing of peripheral lines A and B only affects the output line. The peripheral
input lines are always connected to the pin input.
After reset, PIO_ABSR is 0, thus indicating that all the PIO lines are configured on peripheral A.
However, peripheral A generally does not drive the pin as the PIO Controller resets in I/O line
mode.
Writing in PIO_ASR and PIO_BSR manages PIO_ABSR regardless of the configuration of the
pin. However, assignment of a pin to a peripheral function requires a write in the corresponding
peripheral selection register (PIO_ASR or PIO_BSR) in addition to a write in PIO_PDR.
When the I/0 line is assigned to a peripheral function, i.e. the corresponding bit in PIO_PSR is at
0, the drive of the I/O line is controlled by the peripheral. Peripheral A or B, depending on the
value in PIO_ABSR, determines whether the pin is driven or not.
When the I/O line is controlled by the PIO controller, the pin can be configured to be driven. This
is done by writing PIO_OER (Output Enable Register) and PIO_ODR (Output Disable Register).
AT91SAM7S Series Preliminary
243

Related parts for AT91SAM7S64C-AU