ATmega406 Atmel Corporation, ATmega406 Datasheet - Page 174

no-image

ATmega406

Manufacturer Part Number
ATmega406
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega406

Flash (kbytes)
40 Kbytes
Pin Count
48
Max. Operating Frequency
1 MHz
Cpu
8-bit AVR
# Of Touch Channels
8
Hardware Qtouch Acquisition
No
Max I/o Pins
18
Ext Interrupts
4
Usb Speed
No
Usb Interface
No
Twi (i2c)
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
11
Adc Resolution (bits)
12
Adc Speed (ksps)
1.9
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
2
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-30 to 85
I/o Supply Class
4.0 to 25
Operating Voltage (vcc)
4.0 to 25
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
3
Pwm Channels
2
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATmega406-1AAU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega406-1AAU
Manufacturer:
AT
Quantity:
20 000
26.5
174
Using the On-chip Debug System
ATmega406
• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data
• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected data register
As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using data registers, and some JTAG instructions may select certain func-
tions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.
Note:
For detailed information on the JTAG specification, refer to the literature listed in
face and On-chip Debug System” on page
As shown in
• A scan chain on the interface between the internal AVR CPU and the internal peripheral units.
• Break Point unit.
• Communication interface between the CPU and JTAG system.
All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.
The Break Point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Break Points, and two combined Break Points. Together, the four Break
Points can be configured as either:
• 4 single Program Memory Break Points.
• 3 Single Program Memory Break Point + 1 single Data Memory Break Point.
• 2 single Program Memory Break Points + 2 single Data Memory Break Points.
• 2 single Program Memory Break Points + 1 Program Memory Break Point with mask (“range
• 2 single Program Memory Break Points + 1 Data Memory Break Point with mask (“range Break
A debugger, like the AVR Studio, may however use one or more of these resources for its inter-
nal purpose, leaving less flexibility to the end-user.
A list of the On-chip Debug specific JTAG instructions is given in
Instructions” on page
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR, Pause-
IR, and Exit2-IR states are only used for navigating the state machine.
Register – Shift-DR state. While in this state, upload the selected data register (selected by the
present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising edge
of TCK. In order to remain in the Shift-DR state, the TMS input must be held low during input of
all bits except the MSB. The MSB of the data is shifted in when this state is left by setting TMS
high. While the data register is shifted in from the TDI pin, the parallel inputs to the data
register captured in the Capture-DR state is shifted out on the TDO pin.
has a latched parallel-output, the latching takes place in the Update-DR state. The Exit-DR,
Pause-DR, and Exit2-DR states are only used for navigating the state machine.
Break Point”).
Point”).
Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for five TCK clock periods.
Figure
26-1, the hardware support for On-chip Debugging consists mainly of
175.
171.
”On-chip Debug Specific JTAG
2548E–AVR–07/06
”JTAG Inter-

Related parts for ATmega406