ADE7878ACPZ Analog Devices Inc, ADE7878ACPZ Datasheet - Page 61

no-image

ADE7878ACPZ

Manufacturer Part Number
ADE7878ACPZ
Description
IC ENERGY METERING 3PH 40LFCSP
Manufacturer
Analog Devices Inc
Datasheets

Specifications of ADE7878ACPZ

Input Impedance
400 KOhm
Measurement Error
0.1%
Voltage - I/o High
2.4V
Voltage - I/o Low
0.4V
Current - Supply
22mA
Voltage - Supply
3 V ~ 3.6 V
Operating Temperature
-40°C ~ 85°C
Mounting Type
Surface Mount
Package / Case
40-WFQFN, CSP Exposed Pad
Meter Type
3 Phase
Supply Voltage Range
3V To 3.6V
Operating Temperature Range
-40°C To +85°C
Digital Ic Case Style
LFCSP
No. Of Pins
40
Msl
MSL 1 - Unlimited
Peak Reflow Compatible (260 C)
Yes
Supply Voltage Min
3V
Rohs Compliant
Yes
Leaded Process Compatible
Yes
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ADE7878ACPZ
Manufacturer:
ST
Quantity:
7 500
Part Number:
ADE7878ACPZ
Manufacturer:
ADI
Quantity:
30
Part Number:
ADE7878ACPZ
Manufacturer:
ADI/亚德诺
Quantity:
20 000
Part Number:
ADE7878ACPZ-RL
Manufacturer:
AD
Quantity:
210
Part Number:
ADE7878ACPZ-RL
Manufacturer:
RICOH
Quantity:
4 100
Sign of Sum-of-Phase Powers in the CFx Datapath
The ADE7854/ADE7858/ADE7868/ADE7878 have sign detection
circuitry for the sum of phase powers that are used in the CFx
datapath. As seen in the beginning of the Energy-to-Frequency
Conversion section, the energy accumulation in the CFx data-
path is executed in two stages. Every time a sign change is detected
in the energy accumulation at the end of the first stage, that is,
after the energy accumulated into the accumulator reaches one
of the WTHR, VARTHR, or VATHR thresholds, a dedicated
interrupt can be triggered synchronously with the corresponding
CFx pulse. The sign of each sum can be read in the PHSIGN
register.
Bit 18, Bit 13, and Bit 9 (REVPSUM3, REVPSUM2, and
REVPSUM1, respectively) of the STATUS0 register are set
to 1 when a sign change of the sum of powers in CF3, CF2,
or CF1 datapaths occurs. To correlate these events with the
pulses generated at the CFx pins, after a sign change occurs,
Bit REVPSUM3, Bit REVPSUM2, and Bit REVPSUM1 are set
in the same moment in which a high-to-low transition at the
CF3, CF2, and CF1 pin, respectively, occurs.
Bit 8, Bit 7, and Bit 3 (SUM3SIGN, SUM2SIGN, and SUM1SIGN,
respectively) of the PHSIGN register are set in the same moment
with Bit REVPSUM3, Bit REVPSUM2, and Bit EVPSUM1 and
indicate the sign of the sum of phase powers. When cleared to
0, the sum is positive. When set to 1, the sum is negative.
Interrupts attached to Bit 18, Bit 13, and Bit 9 (REVPSUM3,
REVPSUM2, and REVPSUM1, respectively) in the STATUS0
register are enabled by setting Bit 18, Bit 13, and Bit 9 in the
MASK0 register. If enabled, the IRQ0 pin is set low, and the
status bit is set to 1 whenever a change of sign occurs. To find
the phase that triggered the interrupt, the PHSIGN register is
read immediately after reading the STATUS0 register. Next, the
xVARSIGN BIT
Figure 76. Reactive Power Accumulation in Sign Adjusted Mode
THRESHOLD
THRESHOLD
THRESHOLD
REVRPx BIT
IN STATUS0
REACTIVE
REACTIVE
IN PHSIGN
NO-LOAD
NO-LOAD
NO-LOAD
ENERGY
POWER
POWER
ACTIVE
SIGN = POSITIVE
VARNOLOAD
POS
NEG
POS
Rev. D | Page 61 of 96
status bit is cleared, and the IRQ0 pin is set high again by writing
to the STATUS0 register with the corresponding bit set to 1.
NO LOAD CONDITION
The no load condition is defined in metering equipment standards
as occurring when the voltage is applied to the meter and no cur-
rent flows in the current circuit. To eliminate any creep effects in
the meter, the ADE7854/ADE7858/ADE7868/ADE7878 contain
three separate no load detection circuits: one related to the total
active and reactive powers (ADE7858/ADE7868/ADE7878
only), one related to the fundamental active and reactive powers
(ADE7878 only), and one related to the apparent powers.
No Load Detection Based On Total Active, Reactive
Powers
This no load condition is triggered when the absolute values of
both phase total active and reactive powers are less than or equal
to positive thresholds indicated in the respective APNOLOAD
and VARNOLOAD signed 24-bit registers. In this case, the total
active and reactive energies of that phase are not accumulated
and no CFx pulses are generated based on these energies. The
APNOLOAD register represents the positive no load level of
active power relative to PMAX, the maximum active power
obtained when full-scale voltages and currents are provided at
ADC inputs. The VARNOLOAD register represents the positive
no load level of reactive power relative to PMAX. The expres-
sion used to compute APNOLOAD signed 24-bit value is
where:
PMAX = 33,516,139 = 0x1FF6A6B, the instantaneous power
computed when the ADC inputs are at full scale.
U
the ADC inputs are at full scale.
U
I
starts measuring.
The VARNOLOAD register usually contains the same value as
the APNOLOAD register. When APNOLOAD and VARNOLOAD
are set to negative values, the no load detection circuit is disabled.
Note that the ADE7854 measures only the total active powers.
To ensure good functionality of the ADE7854 no-load circuit,
set the VARNOLOAD register at 0x800000.
As previously stated in the Current Waveform Gain Registers
section, the serial ports of the ADE78xx work on 32-, 16-, or
8-bit words and the DSP works on 28 bits. APNOLOAD and
VARNOLOAD 24-bit signed registers are accessed as 32-bit
registers with the four MSBs padded with 0s and sign extended
to 28 bits. See Figure 33 for details.
NOLOAD
FS
n
is the nominal rms value of phase voltage.
, I
ADE7854/ADE7858/ADE7868/ADE7878
APNOLOAD
FS
is the minimum rms value of phase current the meter
are the rms values of phase voltages and currents when
=
U
U
FS
n
×
I
NOLOAD
I
FS
×
PMAX
(47)

Related parts for ADE7878ACPZ