PIC18F65J11-I/PT Microchip Technology, PIC18F65J11-I/PT Datasheet - Page 202

IC PIC MCU FLASH 16KX16 64TQFP

PIC18F65J11-I/PT

Manufacturer Part Number
PIC18F65J11-I/PT
Description
IC PIC MCU FLASH 16KX16 64TQFP
Manufacturer
Microchip Technology
Series
PIC® 18Fr

Specifications of PIC18F65J11-I/PT

Core Size
8-Bit
Program Memory Size
32KB (16K x 16)
Core Processor
PIC
Speed
40MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number Of I /o
51
Program Memory Type
FLASH
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
2 V ~ 3.6 V
Data Converters
A/D 12x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TFQFP
Controller Family/series
PIC18
No. Of I/o's
52
Ram Memory Size
2048Byte
Cpu Speed
40MHz
No. Of Timers
4
Interface
I2C, SPI, USART
Package
64TQFP
Device Core
PIC
Family Name
PIC18
Maximum Speed
40 MHz
Operating Supply Voltage
2.5|3.3 V
Data Bus Width
8 Bit
Number Of Programmable I/os
52
Interface Type
I2C/SPI/USART
On-chip Adc
12-chx10-bit
Number Of Timers
4
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
MA180018 - MODULE PLUG-IN 18F85J11AC162079 - HEADER MPLAB ICD2 18F85J90 64/80AC164327 - MODULE SKT FOR 64TQFP
Eeprom Size
-
Lead Free Status / RoHS Status
Lead free / RoHS Compliant, Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F65J11-I/PT
Manufacturer:
Microchip Technology
Quantity:
10 000
PIC18F85J11 FAMILY
17.4.4
Both 7-Bit and 10-Bit Slave modes implement
automatic clock stretching during a transmit sequence.
The SEN bit (SSPCON2<0>) allows clock stretching to
be enabled during receives. Setting SEN will cause
the SCL pin to be held low at the end of each data
receive sequence.
17.4.4.1
In 7-Bit Slave Receive mode when the BF bit is set, on
the falling edge of the ninth clock at the end of the
ACK sequence, the CKP bit in the SSPCON1 register
is automatically cleared, forcing the SCL output to be
held low. The CKP bit being cleared to ‘0’ will assert
the SCL line low. The CKP bit must be set in the user’s
ISR before reception is allowed to continue. By holding
the SCL line low, the user has time to service the ISR
and read the contents of the SSPBUF before the
master device can initiate another receive sequence.
This will prevent buffer overruns from occurring (see
Figure 17-15).
17.4.4.2
In 10-Bit Slave Receive mode, during the address
sequence, clock stretching automatically takes place
but the CKP bit is not cleared. During this time, if the
UA bit is set after the ninth clock, clock stretching is
initiated. The UA bit is set after receiving the upper
byte of the 10-bit address and following the receive of
the second byte of the 10-bit address with the R/W bit
cleared to ‘0’. The release of the clock line occurs
upon updating SSPADD. Clock stretching will occur on
each data receive sequence as described in 7-bit
mode.
DS39774D-page 202
Note:
Note 1: If the user reads the contents of the
2: The CKP bit can be set in software
CLOCK STRETCHING
If the user polls the UA bit and clears it by
updating the SSPADD register before the
falling edge of the ninth clock occurs and if
the user hasn’t cleared the BF bit by read-
ing the SSPBUF register before that time,
then the CKP bit will still NOT be asserted
low. Clock stretching on the basis of the
state of the BF bit only occurs during a
data sequence, not an address sequence.
SSPBUF before the falling edge of the
ninth clock, thus clearing the BF bit, the
CKP bit will not be cleared and clock
stretching will not occur.
regardless of the state of the BF bit. The
user should be careful to clear the BF bit
in the ISR before the next receive
sequence in order to prevent an overflow
condition.
Clock Stretching for 7-Bit Slave
Receive Mode (SEN =
Clock Stretching for 10-Bit Slave
Receive Mode (SEN = 1)
1
)
17.4.4.3
The 7-Bit Slave Transmit mode implements clock
stretching by clearing the CKP bit after the falling edge
of the ninth clock if the BF bit is clear. This occurs
regardless of the state of the SEN bit.
The user’s ISR must set the CKP bit before transmis-
sion is allowed to continue. By holding the SCL line
low, the user has time to service the ISR and load the
contents of the SSPBUF before the master device can
initiate another transmit sequence (see Figure 17-10).
17.4.4.4
In 10-Bit Slave Transmit mode, clock stretching is
controlled during the first two address sequences by
the state of the UA bit, just as it is in 10-Bit Slave
Receive mode. The first two addresses are followed
by a third address sequence which contains the
high-order bits of the 10-bit address and the R/W bit
set to ‘1’. After the third address sequence is
performed, the UA bit is not set, the module is now
configured in Transmit mode and clock stretching is
controlled by the BF flag as in 7-Bit Slave Transmit
mode (see Figure 17-13).
Note 1: If the user loads the contents of SSPBUF,
2: The CKP bit can be set in software
setting the BF bit before the falling edge of
the ninth clock, the CKP bit will not be
cleared and clock stretching will not occur.
regardless of the state of the BF bit.
Clock Stretching for 7-Bit Slave
Transmit Mode
Clock Stretching for 10-Bit Slave
Transmit Mode
 2010 Microchip Technology Inc.

Related parts for PIC18F65J11-I/PT