AT90CAN64-16MU Atmel, AT90CAN64-16MU Datasheet - Page 238

IC MCU AVR 64K FLASH 64-QFN

AT90CAN64-16MU

Manufacturer Part Number
AT90CAN64-16MU
Description
IC MCU AVR 64K FLASH 64-QFN
Manufacturer
Atmel
Series
AVR® 90CANr
Datasheets

Specifications of AT90CAN64-16MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VQFN Exposed Pad, 64-HVQFN, 64-SQFN, 64-DHVQFN
Processor Series
AT90CANx
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
2
Operating Supply Voltage
0.5 V to 0.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATDVK90CAN1, ATADAPCAN01
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATDVK90CAN1 - KIT DEV FOR AT90CAN128 MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90CAN64-16MU
Manufacturer:
ATMEL
Quantity:
210
Part Number:
AT90CAN64-16MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
19.2.3.8
19.2.3.9
19.2.3.10
19.2.3.11
19.2.3.12
19.2.4
238
AT90CAN32/64/128
Arbitration
Bit Lengthening
Bit Shortening
Synchronization Jump Width
Programming the Sample Point
Synchronization
The IPT begins at the sample point, is measured in TQ and is fixed at 2TQ for the Atmel CAN.
Since Phase Segment 2 also begins at the sample point and is the last segment in the bit time,
PS2 minimum shall not be less than the IPT.
As a result of resynchronization, Phase Segment 1 may be lengthened or Phase Segment 2
may be shortened to compensate for oscillator tolerances. If, for example, the transmitter oscilla-
tor is slower than the receiver oscillator, the next falling edge used for resynchronization may be
delayed. So Phase Segment 1 is lengthened in order to adjust the sample point and the end of
the bit time.
If, on the other hand, the transmitter oscillator is faster than the receiver one, the next falling
edge used for resynchronization may be too early. So Phase Segment 2 in bit N is shortened in
order to adjust the sample point for bit N+1 and the end of the bit time
The limit to the amount of lengthening or shortening of the Phase Segments is set by the Resyn-
chronization Jump Width.
This segment may not be longer than Phase Segment 2.
Programming of the sample point allows "tuning" of the characteristics to suit the bus.
Early sampling allows more Time Quanta in the Phase Segment 2 so the Synchronization Jump
Width can be programmed to its maximum. This maximum capacity to shorten or lengthen the
bit time decreases the sensitivity to node oscillator tolerances, so that lower cost oscillators such
as ceramic resonators may be used.
Late sampling allows more Time Quanta in the Propagation Time Segment which allows a
poorer bus topology and maximum bus length.
Hard synchronization occurs on the recessive-to-dominant transition of the start bit. The bit time
is restarted from that edge.
Re-synchronization occurs when a recessive-to-dominant edge doesn't occur within the Syn-
chronization Segment in a message.
The CAN protocol handles bus accesses according to the concept called “Carrier Sense Multiple
Access with Arbitration on Message Priority”.
During transmission, arbitration on the CAN bus can be lost to a competing device with a higher
priority CAN Identifier. This arbitration concept avoids collisions of messages whose transmis-
sion was started by more than one node simultaneously and makes sure the most important
message is sent first without time loss.
The bus access conflict is resolved during the arbitration field mostly over the identifier value. If a
data frame and a remote frame with the same identifier are initiated at the same time, the data
frame prevails over the remote frame (c.f. RTR bit).
7679H–CAN–08/08

Related parts for AT90CAN64-16MU