AT90CAN64-16MU Atmel, AT90CAN64-16MU Datasheet - Page 331

IC MCU AVR 64K FLASH 64-QFN

AT90CAN64-16MU

Manufacturer Part Number
AT90CAN64-16MU
Description
IC MCU AVR 64K FLASH 64-QFN
Manufacturer
Atmel
Series
AVR® 90CANr
Datasheets

Specifications of AT90CAN64-16MU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
CAN, EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-VQFN Exposed Pad, 64-HVQFN, 64-SQFN, 64-DHVQFN
Processor Series
AT90CANx
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
2-Wire, SPI, USART
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
2
Operating Supply Voltage
0.5 V to 0.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATDVK90CAN1, ATADAPCAN01
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
For Use With
ATSTK600-TQFP64 - STK600 SOCKET/ADAPTER 64-TQFP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATDVK90CAN1 - KIT DEV FOR AT90CAN128 MCU
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT90CAN64-16MU
Manufacturer:
ATMEL
Quantity:
210
Part Number:
AT90CAN64-16MU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
24.7.10
7679H–CAN–08/08
Preventing Flash Corruption
The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an LPM instruction is executed within three cycles after the
BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will be
loaded in the destination register as shown below. Refer to
detailed description and mapping of the Fuse Low byte.
Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM instruc-
tion is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR,
the value of the Fuse High byte (FHB) will be loaded in the destination register as shown below.
Refer to
When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction
is executed within three cycles after the BLBSET and SPMEN bits are set in the SPMCSR, the
value of the Extended Fuse byte (EFB) will be loaded in the destination register as shown below.
Refer to
byte.
Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.
During periods of low V
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.
A Flash program corruption can be caused by two situations when the voltage is too low.
Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):
Bit
Rd (Z=0x0000)
Bit
Rd (Z=0x0003)
Bit
Rd (Z=0x0002)
• First, a regular write sequence to the Flash requires a minimum voltage to operate correctly.
• Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage for
1. If there is no need for a Boot Loader update in the system, program the Boot Loader
2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
executing instructions is too low.
Lock bits to prevent any Boot Loader software updates.
This can be done by enabling the internal Brown-out Detector (BOD) if the operating
voltage matches the detection level. If not, an external low V
can be used. If a reset occurs while a write operation is in progress, the write operation
will be completed provided that the power supply voltage is sufficient.
Table 25-4 on page 337
Table 25-3 on page 337
FLB7
FHB7
7
7
7
CC
, the Flash program can be corrupted because the supply voltage is
FLB6
FHB6
6
6
6
for detailed description and mapping of the Fuse High byte.
for detailed description and mapping of the Extended Fuse
FHB5
FLB5
5
5
5
FLB4
FHB4
4
4
4
FLB3
FHB3
EFB3
3
3
3
AT90CAN32/64/128
FLB2
FHB2
EFB2
2
2
2
Table 25-5 on page 338
CC
FLB1
FHB1
EFB1
reset protection circuit
1
1
1
FLB0
FHB0
EFB0
0
0
0
for a
331

Related parts for AT90CAN64-16MU