CYRF69213-40LFXC Cypress Semiconductor Corp, CYRF69213-40LFXC Datasheet - Page 21

IC PROC 8K FLASH 40VQFN

CYRF69213-40LFXC

Manufacturer Part Number
CYRF69213-40LFXC
Description
IC PROC 8K FLASH 40VQFN
Manufacturer
Cypress Semiconductor Corp
Series
CYRFr
Type
Transceiverr
Datasheet

Specifications of CYRF69213-40LFXC

Package / Case
40-VQFN Exposed Pad, 40-HVQFN, 40-SQFN, 40-DHVQFN
Frequency
2.4GHz
Data Rate - Maximum
1Mbps
Modulation Or Protocol
ISM
Applications
General Purpose
Power - Output
4dBm
Sensitivity
-97dBm
Voltage - Supply
4 V ~ 5.5 V
Current - Receiving
23.4mA
Current - Transmitting
36.6mA
Data Interface
PCB, Surface Mount
Memory Size
8kB Flash, 256B SRAM
Antenna Connector
PCB, Surface Mount
Operating Temperature
0°C ~ 70°C
Operating Frequency
2497 MHz
Operating Supply Voltage
2.5 V or 3.3 V
Maximum Operating Temperature
+ 70 C
Minimum Operating Temperature
0 C
Mounting Style
SMD/SMT
Operating Temperature (min)
0C
Operating Temperature (max)
70C
Operating Temperature Classification
Commercial
Operating Supply Voltage (min)
1.8V
Operating Supply Voltage (typ)
2.5/3.3V
Operating Supply Voltage (max)
3.6V
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
770-1001 - ISP 4PORT CYPRESS ENCORE II MCU
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
428-1934

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
CYRF69213-40LFXC
Manufacturer:
CYPRESS/赛普拉斯
Quantity:
20 000
EraseAll Function
The EraseAll function performs a series of steps that destroy the
user data in the Flash macros and resets the protection block in
each Flash macro to all zeros (the unprotected state). The
EraseAll function does not affect the three hidden blocks above
the protection block in each Flash macro. The first of these four
hidden blocks is used to store the protection table for its eight
Kbytes of user data.
The EraseAll function begins by erasing the user space of the
Flash macro with the highest address range. A bulk program of
all zeros is then performed on the same Flash macro, to destroy
all traces of the previous contents. The bulk program is followed
by a second erase that leaves the Flash macro in a state ready
for writing. The erase, program, erase sequence is then
performed on the next lowest Flash macro in the address space
if it exists. Following the erase of the user space, the protection
block for the Flash macro with the highest address range is
erased. Following the erase of the protection block, zeros are
written into every bit of the protection table. The next lowest
Flash macro in the address space then has its protection block
erased and filled with zeros.
The end result of the EraseAll function is that all user data in the
Flash is destroyed and the Flash is left in an unprogrammed
state, ready to accept one of the various write commands. The
protection bits for all user data are also reset to the zero state.
The parameter block values that must be set, besides the keys,
are the CLOCK and DELAY values.
Table 31. EraseAll Parameters
TableRead Function
The TableRead function gives the user access to part specific
data stored in the Flash during manufacturing. It also returns a
Revision ID for the die (not to be confused with the Silicon ID).
Table 32. Table Read Parameters
The table space for the CYRF69213 is simply a 64-byte row
broken up into eight tables of eight bytes. The tables are
Document #: 001-07552 Rev. *D
KEY1
KEY2
CLOCK 0,FCh
DELAY
KEY1
KEY2
BLOCKID 0,FAh
Name
Name
0,F8h
0,F9h
0,FEh
Address
0,F8h
0,F9h
Address
3Ah
Stack Pointer value when SSC is
executed
Clock divider used to set the write pulse
width
For a CPU speed of 12 MHz set to 56h
3Ah
Stack Pointer value when SSC is
executed
Table number to read
Description
Description
numbered zero through seven. All user and hidden blocks in the
CYRF69213 parts consist of 64 bytes.
An internal table holds the Silicon ID and returns the Revision ID.
The Silicon ID is returned in SRAM, while the Revision ID is
returned in the CPU_A and CPU_X registers. The Silicon ID is a
value placed in the table by programming the Flash and is
controlled by Cypress Semiconductor Product Engineering. The
Revision ID is hard coded into the SROM. The Revision ID is
discussed in more detail later in this section.
An internal table holds alternate trim values for the device and
returns a one-byte internal revision counter. The internal revision
counter starts out with a value of zero and is incremented each
time one of the other revision numbers is not incremented. It is
reset to zero each time one of the other revision numbers is
incremented. The internal revision count is returned in the
CPU_A register. The CPU_X register is always set to FFh when
trim values are read. The BLOCKID value, in the parameter
block, is used to indicate which table should be returned to the
user. Only the three least significant bits of the BLOCKID
parameter are used by the TableRead function for the
CYRF69213. The upper five bits are ignored. When the function
is called, it transfers bytes from the table to SRAM addresses
F8h–FFh.
The M8C’s A and X registers are used by the TableRead function
to return the die’s Revision ID. The Revision ID is a 16-bit value
hard coded into the SROM that uniquely identifies the die’s
design.
Checksum Function
The Checksum function calculates a 16-bit checksum over a
user specifiable number of blocks, within a single Flash macro
(Bank) starting from block zero. The BLOCKID parameter is
used to pass in the number of blocks to calculate the checksum
over. A BLOCKID value of 1 calculates the checksum of only
block 0, while a BLOCKID value of 0 calculates the checksum of
all 256 user blocks. The 16-bit checksum is returned in KEY1 and
KEY2. The parameter KEY1 holds the lower eight bits of the
checksum and the parameter KEY2 holds the upper eight bits of
the checksum.
The checksum algorithm executes the following sequence of
three instructions over the number of blocks times 64 to be
checksummed.
romx
adc [KEY2], 0
Table 33. Checksum Parameters
KEY1
KEY2
BLOCKID
add [KEY1], A
Name
0,F8h
0,F9h
0,FAh
Address
3Ah
Stack Pointer value when SSC is
executed
Number of Flash blocks to calculate
checksum on
Description
CYRF69213
Page 21 of 77
[+] Feedback

Related parts for CYRF69213-40LFXC