AT32UC3A3128 Atmel Corporation, AT32UC3A3128 Datasheet - Page 338

no-image

AT32UC3A3128

Manufacturer Part Number
AT32UC3A3128
Description
Manufacturer
Atmel Corporation

Specifications of AT32UC3A3128

Flash (kbytes)
128 Kbytes
Pin Count
144
Max. Operating Frequency
66 MHz
Cpu
32-bit AVR
# Of Touch Channels
32
Hardware Qtouch Acquisition
No
Max I/o Pins
110
Ext Interrupts
110
Usb Transceiver
1
Usb Speed
Hi-Speed
Usb Interface
Device + OTG
Spi
6
Twi (i2c)
2
Uart
4
Lin
4
Ssc
1
Sd / Emmc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Dac Channels
2
Dac Resolution (bits)
16
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
128
Self Program Memory
YES
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
3.0 to 3.6
Operating Voltage (vcc)
3.0 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
6
Output Compare Channels
18
Input Capture Channels
12
Pwm Channels
12
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3A3128-ALUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT32UC3A3128-ALUT
Manufacturer:
Atmel
Quantity:
135
Part Number:
AT32UC3A3128-ALUT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT32UC3A3128-CTUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT32UC3A3128-CTUT
Manufacturer:
Atmel
Quantity:
1 801
Part Number:
AT32UC3A3128-CTUT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
AT32UC3A3128-CTUT
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
AT32UC3A3128-U
Manufacturer:
ATMEL
Quantity:
11
32072G–11/2011
Figure 19-13. Multi-Block DMA Transfer with Source Address Auto-reloaded and Linked List
The DMA Transfer flow is shown in
17. The DMACA fetches the next LLI from memory location pointed to by the current LLPx
a. If interrupts are enabled (CTLx.INT_EN = 1) and the block complete interrupt is un-
b. If interrupts are disabled (CTLx.INT_EN = 0) or the block complete interrupt is
register, and automatically reprograms the DARx, CTLx and LLPx channel registers.
Note that the SARx is not re-programmed as the reloaded value is used for the next
DMA block transfer. If the next block is the last block of the DMA transfer then the CTLx
and LLPx registers just fetched from the LLI should match Row 1 or Row 5 of
1 on page
338.
Address of
Source Layer
masked (MaskBlock[x] = 1’b1, where x is the channel number) hardware sets the
block complete interrupt when the block transfer has completed. It then stalls until
the block complete interrupt is cleared by software. If the next block is to be the last
block in the DMA transfer, then the block complete ISR (interrupt service routine)
should clear the CFGx.RELOAD_SR source reload bit. This puts the DMACA into
Row1 as shown in
the DMA transfer, then the source reload bit should remain enabled to keep the
DMACA in Row 7 as shown in
masked (MaskBlock[x] = 1’b0, where x is the channel number) then hardware does
not stall until it detects a write to the block complete interrupt clear register but
starts the next block transfer immediately. In this case, software must clear the
source reload bit, CFGx.RELOAD_SR, to put the device into Row 1 of
on page 326
Destination Address
SAR
326. The DMA transfer might look like that shown in
Source Blocks
before the last block of the DMA transfer has completed.
Table 19-1 on page
Figure 19-14 on page
Table 19-1 on page
326. If the next block is not the last block in
DAR(N)
DAR(1)
DAR(2)
DAR(0)
Destination Blocks
BlockN
Block0
Block1
Block2
339.
326.
Figure 19-13 on page
Destination Layer
Address of
Table 19-1
Table 19-
338

Related parts for AT32UC3A3128