mc56f8335 Freescale Semiconductor, Inc, mc56f8335 Datasheet - Page 9

no-image

mc56f8335

Manufacturer Part Number
mc56f8335
Description
16-bit Digital Signal Controller
Manufacturer
Freescale Semiconductor, Inc
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
mc56f8335MFGE
Manufacturer:
Freescale Semiconductor
Quantity:
135
Part Number:
mc56f8335MFGE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
mc56f8335VFGE
Manufacturer:
MOTOLOLA
Quantity:
621
Part Number:
mc56f8335VFGE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
mc56f8335VFGE
Manufacturer:
FREESCALE
Quantity:
20 000
Company:
Part Number:
mc56f8335VFGE
Quantity:
24
Award-Winning Development Environment
DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM
incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to
directly drive standard optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters
is also included. A patented PWM waveform distortion correction circuit is also provided. The PWM is
double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1
to 16. The PWM module provides reference outputs to synchronize the Analog-to-Digital Converters
through two channels of Quad Timer C.
The 56F8135 incorporates a Quadrature Decoder capable of capturing all four transitions on the two-phase
inputs, permitting generation of a number proportional to actual position. Speed computation capabilities
accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder
can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered
to ensure only true transitions are recorded.
This controller also provides a full set of standard programmable peripherals that include two Serial
Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and two Quad Timers. Any of
these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An
internal interrupt controller is also a part of the 56F8135.
1.3 Award-Winning Development Environment
TM
Processor Expert
(PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use
component-based software application creation with an expert knowledge system.
The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation,
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards
will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable
tools solution for easy, fast, and efficient development.
1.4 Architecture Block Diagram
Note: Features in italics are NOT available in the 56F8135 device and are shaded in the following figures.
The 56F8335/56F8135 architecture is shown in
Figure 1-1
and
Figure
1-2.
Figure 1-1
illustrates how the
56800E system buses communicate with internal memories and the IPBus Bridge.
Table 1-2
lists the
internal buses in the 56800E architecture and provides a brief description of their function.
Figure 1-2
shows the peripherals and control blocks connected to the IPBus Bridge. The figures do not show the
on-board regulator and power and ground signals. They also do not show the multiplexing between
peripherals or the dedicated GPIOs. Please see
Part 2, Signal/Connection Descriptions,
to see which
signals are multiplexed with those of other peripherals.
Also shown in
Figure 1-2
are connections between the PWM, Timer C and ADC blocks. These
connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The
Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions.
In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer
C input channel as indicated. The timer can then be used to introduce a controllable delay before
generating its output signal. The timer output then triggers the ADC. To fully understand this interaction,
please see the 56F8300 Peripheral User’s Manual for clarification on the operation of all three of these
peripherals.
56F8335 Technical Data, Rev. 5
Freescale Semiconductor
9
Preliminary

Related parts for mc56f8335