ATMEGA8L-8PU Atmel, ATMEGA8L-8PU Datasheet - Page 86

IC AVR MCU 8K 8MHZ 3V 28DIP

ATMEGA8L-8PU

Manufacturer Part Number
ATMEGA8L-8PU
Description
IC AVR MCU 8K 8MHZ 3V 28DIP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA8L-8PU

Core Processor
AVR
Core Size
8-Bit
Speed
8MHz
Connectivity
I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
23
Program Memory Size
8KB (4K x 16)
Program Memory Type
FLASH
Eeprom Size
512 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-DIP (0.300", 7.62mm)
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
8MHz
Interface Type
SPI/TWI/USART
Total Internal Ram Size
1KB
# I/os (max)
23
Number Of Timers - General Purpose
3
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
On-chip Adc
6-chx10-bit
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Through Hole
Pin Count
28
Package Type
PDIP
Processor Series
ATMEGA8x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
1 KB
Maximum Clock Frequency
8 MHz
Number Of Programmable I/os
23
Number Of Timers
3
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Minimum Operating Temperature
- 40 C
Controller Family/series
AVR MEGA
No. Of I/o's
23
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Cpu Speed
8MHz
Rohs Compliant
Yes
For Use With
ATSTK600-TQFP32 - STK600 SOCKET/ADAPTER 32-TQFPATSTK600-DIP40 - STK600 SOCKET/ADAPTER 40-PDIP770-1007 - ISP 4PORT ATMEL AVR MCU SPI/JTAGATAVRISP2 - PROGRAMMER AVR IN SYSTEMATSTK500 - PROGRAMMER AVR STARTER KIT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA8L-8PU
Manufacturer:
BROADCOM
Quantity:
101
Part Number:
ATMEGA8L-8PU
Manufacturer:
ATMEL
Quantity:
33 600
Part Number:
ATMEGA8L-8PU
Manufacturer:
ATMEL/PBF
Quantity:
28
Part Number:
ATMEGA8L-8PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATMEGA8L-8PU-QS096
Manufacturer:
ATMEL
Quantity:
56
Company:
Part Number:
ATMEGA8L-8PU-QS096
Quantity:
560
Compare Output Mode and
Waveform Generation
Modes of Operation
Normal Mode
Clear Timer on Compare
Match (CTC) Mode
86
ATmega8(L)
The waveform generator uses the COM1x1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM1x1:0 = 0 tells the waveform generator that no
action on the OC1x Register is to be performed on the next Compare Match. For com-
pare output actions in the non-PWM modes refer to Table 36 on page 95. For fast PWM
mode refer to Table 37 on page 96, and for phase correct and phase and frequency cor-
rect PWM refer to Table 38 on page 96.
A change of the COM1x1:0 bits state will have effect at the first Compare Match after
the bits are written. For non-PWM modes, the action can be forced to have immediate
effect by using the FOC1x strobe bits.
The mode of operation (i.e., the behavior of the Timer/Counter and the Output Compare
pins) is defined by the combination of the Waveform Generation mode (WGM13:0) and
Compare Output mode (COM1x1:0) bits. The Compare Output mode bits do not affect
the counting sequence, while the Waveform Generation mode bits do. The COM1x1:0
bits control whether the PWM output generated should be inverted or not (inverted or
non-inverted PWM). For non-PWM modes the COM1x1:0 bits control whether the out-
put should be set, cleared or toggle at a Compare Match. See “Compare Match Output
Unit” on page 85.
For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 93.
The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the
counting direction is always up (incrementing), and no counter clear is performed. The
counter simply overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and
then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Over-
flow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1 becomes zero.
The TOV1 Flag in this case behaves like a 17th bit, except that it is only set, not cleared.
However, combined with the timer overflow interrupt that automatically clears the TOV1
Flag, the timer resolution can be increased by software. There are no special cases to
consider in the Normal mode, a new counter value can be written anytime.
The Input Capture unit is easy to use in Normal mode. However, observe that the maxi-
mum interval between the external events must not exceed the resolution of the counter.
If the interval between events are too long, the timer overflow interrupt or the prescaler
must be used to extend the resolution for the capture unit.
The Output Compare units can be used to generate interrupts at some given time. Using
the Output Compare to generate waveforms in Normal mode is not recommended,
since this will occupy too much of the CPU time.
In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1
Register are used to manipulate the counter resolution. In CTC mode the counter is
cleared to zero when the counter value (TCNT1) matches either the OCR1A (WGM13:0
= 4) or the ICR1 (WGM13:0 = 12). The OCR1A or ICR1 define the top value for the
counter, hence also its resolution. This mode allows greater control of the Compare
Match output frequency. It also simplifies the operation of counting external events.
The timing diagram for the CTC mode is shown in Figure 37. The counter value
(TCNT1) increases until a Compare Match occurs with either OCR1A or ICR1, and then
counter (TCNT1) is cleared.
2486O–AVR–10/04

Related parts for ATMEGA8L-8PU