ATTINY84V-10PU Atmel, ATTINY84V-10PU Datasheet - Page 144

no-image

ATTINY84V-10PU

Manufacturer Part Number
ATTINY84V-10PU
Description
AVR MCU, 8K FLASH, 512B RAM, 512B EE
Manufacturer
Atmel
Datasheet

Specifications of ATTINY84V-10PU

Controller Family/series
AVR Tiny
No. Of I/o's
12
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Cpu Speed
10MHz
Core Size
8bit
Program Memory Size
8KB
Oscillator Type
External, Internal
Processor Series
ATTINY8x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Data Ram Size
512 B
Interface Type
SPI
Maximum Clock Frequency
10 MHz
Number Of Programmable I/os
12
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
Package / Case
PDIP-14
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY84V-10PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
18.6
18.6.1
18.6.2
144
Changing Channel or Reference Selection
ATtiny24/44/84
ADC Input Channels
ADC Voltage Reference
The MUX5:0 and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC. Con-
tinuous updating resumes in the last ADC clock cycle before the conversion completes (ADIF in
ADCSRA is set). Note that the conversion starts on the following rising ADC clock edge after
ADSC is written. The user is thus advised not to write new channel or reference selection values
to ADMUX until one ADC clock cycle after ADSC is written.
If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.
If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:
When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.
When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:
In Single Conversion mode, always select the channel before starting the conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the conversion to complete before changing the channel selection.
In Free Running mode, always select the channel before starting the first conversion. The chan-
nel selection may be changed one ADC clock cycle after writing one to ADSC. However, the
simplest method is to wait for the first conversion to complete, and then change the channel
selection. Since the next conversion has already started automatically, the next result will reflect
the previous channel selection. Subsequent conversions will reflect the new channel selection.
The reference voltage for the ADC (V
ended channels that exceed V
either V
after switching reference voltage source may be inaccurate, and the user is advised to discard
this result.
a. When ADATE or ADEN is cleared.
b. During conversion, minimum one ADC clock cycle after the trigger event.
c. After a conversion, before the Interrupt Flag used as trigger source is cleared.
CC
, or internal 1.1V reference, or external AREF pin. The first ADC conversion result
REF
will result in codes close to 0x3FF. V
REF
) indicates the conversion range for the ADC. Single
REF
can be selected as
8006F–AVR–02/07

Related parts for ATTINY84V-10PU