ATTINY84V-10PU Atmel, ATTINY84V-10PU Datasheet - Page 21

no-image

ATTINY84V-10PU

Manufacturer Part Number
ATTINY84V-10PU
Description
AVR MCU, 8K FLASH, 512B RAM, 512B EE
Manufacturer
Atmel
Datasheet

Specifications of ATTINY84V-10PU

Controller Family/series
AVR Tiny
No. Of I/o's
12
Eeprom Memory Size
512Byte
Ram Memory Size
1KB
Cpu Speed
10MHz
Core Size
8bit
Program Memory Size
8KB
Oscillator Type
External, Internal
Processor Series
ATTINY8x
Core
AVR8
Data Bus Width
8 bit
Program Memory Type
Flash
Data Ram Size
512 B
Interface Type
SPI
Maximum Clock Frequency
10 MHz
Number Of Programmable I/os
12
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
Package / Case
PDIP-14
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY84V-10PU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
6.3.6
8006F–AVR–02/07
Preventing EEPROM Corruption
The next code examples show assembly and C functions for reading the EEPROM. The exam-
ples assume that interrupts are controlled so that no interrupts will occur during execution of
these functions.
Note:
During periods of low V
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.
An EEPROM data corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the EEPROM requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too low.
EEPROM data corruption can easily be avoided by following this design recommendation:
Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This can
be done by enabling the internal Brown-out Detector (BOD). If the detection level of the internal
BOD does not match the needed detection level, an external low V
be used. If a reset occurs while a write operation is in progress, the write operation will be com-
pleted provided that the power supply voltage is sufficient.
Assembly Code Example
C Code Example
EEPROM_read:
unsigned char EEPROM_read(unsigned char ucAddress)
{
}
; Wait for completion of previous write
sbic EECR,EEPE
rjmp EEPROM_read
; Set up address (r17) in address register
out EEARL, r17
; Start eeprom read by writing EERE
sbi EECR,EERE
; Read data from data register
in
ret
/* Wait for completion of previous write */
while(EECR & (1<<EEPE))
/* Set up address register */
EEARL = ucAddress;
/* Start eeprom read by writing EERE */
EECR |= (1<<EERE);
/* Return data from data register */
return EEDR;
The code examples are only valid for ATtiny24 and ATtiny44, using 8-bit addressing mode.
;
r16,EEDR
CC
, the EEPROM data can be corrupted because the supply voltage is
CC
ATtiny24/44/84
reset protection circuit can
21

Related parts for ATTINY84V-10PU