mc9s12e256 Freescale Semiconductor, Inc, mc9s12e256 Datasheet - Page 401

no-image

mc9s12e256

Manufacturer Part Number
mc9s12e256
Description
Hcs12 Microcontrollers 16-bit Microcontroller
Manufacturer
Freescale Semiconductor, Inc
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
mc9s12e256CFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
mc9s12e256CPVE
Manufacturer:
Freescale Semiconductor
Quantity:
135
Part Number:
mc9s12e256CPVE
Manufacturer:
FREESCA
Quantity:
300
Part Number:
mc9s12e256CPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
mc9s12e256MFUE
Manufacturer:
FREESCAL
Quantity:
329
Part Number:
mc9s12e256MFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
mc9s12e256MPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
mc9s12e256VFUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
12.4.1.2
The scaled A clock uses clock A as an input and divides it further with a user programmable value and
then divides this by 2. The scaled B clock uses clock B as an input and divides it further with a user
programmable value and then divides this by 2. The rates available for clock SA are software selectable
to be clock A divided by 2, 4, 6, 8, ..., or 512 in increments of divide by 2. Similar rates are available for
clock SB.
Clock A is used as an input to an 8-bit down counter. This down counter loads a user programmable scale
value from the scale register (PWMSCLA). When the down counter reaches 1, two things happen; a pulse
is output and the 8-bit counter is re-loaded. The output signal from this circuit is further divided by two.
This gives a greater range with only a slight reduction in granularity. Clock SA equals clock A divided by
two times the value in the PWMSCLA register.
Similarly, clock B is used as an input to an 8-bit down counter followed by a divide by two producing clock
SB. Thus, clock SB equals clock B divided by two times the value in the PWMSCLB register.
As an example, consider the case in which the user writes 0x00FF into the PWMSCLA register. Clock A
for this case will be bus clock divided by 4. A pulse will occur at a rate of once every 255 x 4 bus cycles.
Passing this through the divide by two circuit produces a clock signal at a bus clock divided by 2040 rate.
Similarly, a value of 0x0001 in the PWMSCLA register when clock A is bus clock divided by 4 will
produce a bus clock divided by 8 rate.
Writing to PWMSCLA or PWMSCLB causes the associated 8-bit down counter to be re-loaded.
Otherwise, when changing rates the counter would have to count down to 0x0001 before counting at the
proper rate. Forcing the associated counter to re-load the scale register value every time PWMSCLA or
PWMSCLB is written prevents this.
Freescale Semiconductor
Clock Scale
Clock SA = Clock A / (2 * PWMSCLA)
When PWMSCLA = 0x0000, PWMSCLA value is considered a full scale
value of 256. Clock A is thus divided by 512.
Clock SB = Clock B / (2 * PWMSCLB)
When PWMSCLB = 0x0000, PWMSCLB value is considered a full scale
value of 256. Clock B is thus divided by 512.
Writing to the scale registers while channels are operating can cause
irregularities in the PWM outputs.
MC9S12E256 Data Sheet, Rev. 1.08
NOTE
NOTE
NOTE
Chapter 12 Pulse-Width Modulator (PWM8B6CV1)
401

Related parts for mc9s12e256