ATTINY48-PU Atmel, ATTINY48-PU Datasheet - Page 186

MCU AVR 4K ISP FLASH 1.8V 28-DIP

ATTINY48-PU

Manufacturer Part Number
ATTINY48-PU
Description
MCU AVR 4K ISP FLASH 1.8V 28-DIP
Manufacturer
Atmel
Series
AVR® ATtinyr
Datasheets

Specifications of ATTINY48-PU

Core Processor
AVR
Core Size
8-Bit
Speed
12MHz
Connectivity
I²C, SPI
Peripherals
Brown-out Detect/Reset, POR, WDT
Number Of I /o
24
Program Memory Size
4KB (2K x 16)
Program Memory Type
FLASH
Eeprom Size
64 x 8
Ram Size
256 x 8
Voltage - Supply (vcc/vdd)
1.8 V ~ 5.5 V
Data Converters
A/D 6x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
28-DIP (0.300", 7.62mm)
Processor Series
ATTINY4x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
256 B
Interface Type
2-Wire/I2S/SPI
Maximum Clock Frequency
12 MHz
Number Of Programmable I/os
28
Number Of Timers
2
Maximum Operating Temperature
+ 85 C
Mounting Style
Through Hole
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
6-ch x 10-bit
Package
28PDIP
Device Core
AVR
Family Name
ATtiny
Maximum Speed
12 MHz
Operating Supply Voltage
2.5|3.3|5 V
For Use With
ATSTK600 - DEV KIT FOR AVR/AVR32ATAVRDRAGON - KIT DRAGON 32KB FLASH MEM AVRATAVRISP2 - PROGRAMMER AVR IN SYSTEM
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATTINY48-PU
Manufacturer:
ATMEL
Quantity:
5 530
Part Number:
ATTINY48-PU
Manufacturer:
AVX
Quantity:
30 000
19.1.3
19.1.4
19.2
19.2.1
186
Register Description
ATtiny48/88
Preventing Flash Corruption
Programming Time for Flash when Using SPM
SPMCSR – Store Program Memory Control and Status Register
During periods of low V
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied.
A Flash program corruption can be caused by two situations when the voltage is too low. First, a
regular write sequence to the Flash requires a minimum voltage to operate correctly. Secondly,
the CPU itself can execute instructions incorrectly, if the supply voltage for executing instructions
is too low.
Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):
The calibrated oscillator is used to time Flash accesses.
ming time for Flash accesses from the CPU.
Table 19-1.
The Store Program Memory Control and Status Register contains the control bits needed to con-
trol the Program memory operations.
• Bit 7 – Res: Reserved Bit
This bit is reserved and will always read zero.
• Bit 6 – RWWSB: Read-While-Write Section Busy
This bit is for compatibility with devices supporting Read-While-Write. It will always read as zero
in ATtiny48/88.
Bit
0x37 (0x57)
Read/Write
Initial Value
Flash write (Page Erase, Page Write, and
write Lock bits by SPM)
1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage.
2. Keep the AVR core in Power-down sleep mode during periods of low V
This can be done by enabling the internal Brown-out Detector (BOD) if the operating
voltage matches the detection level. If not, an external low V
can be used. If a reset occurs while a write operation is in progress, the write operation
will be completed provided that the power supply voltage is sufficient.
vent the CPU from attempting to decode and execute instructions, effectively protecting
the SPMCSR Register and thus the Flash from unintentional writes.
SPM Programming Time
R
7
0
Symbol
RWWSB
CC
R
6
0
, the Flash program can be corrupted because the supply voltage is
R
5
0
CTPB
R/W
4
0
Min Programming Time
RFLB
R/W
3
0
3.7 ms
Table 19-1
PGWRT
R/W
2
0
CC
PGERS
shows the typical program-
reset protection circuit
R/W
1
0
Max Programming Time
CC
SELFPRGEN
. This will pre-
R/W
4.5 ms
0
0
8008G–AVR–04/11
SPMCSR

Related parts for ATTINY48-PU