MC9S12XD256VAG Freescale Semiconductor, MC9S12XD256VAG Datasheet - Page 772

no-image

MC9S12XD256VAG

Manufacturer Part Number
MC9S12XD256VAG
Description
IC MCU 256K FLASH 144-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12XD256VAG

Core Processor
HCS12X
Core Size
16-Bit
Speed
80MHz
Connectivity
CAN, EBI/EMI, I²C, IrDA, LIN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
119
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
14K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 5.5 V
Data Converters
A/D 24x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 105°C
Package / Case
144-LQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12XD256VAG
Manufacturer:
FREESCAL
Quantity:
246
Part Number:
MC9S12XD256VAG
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Chapter 20 S12X Debug (S12XDBGV3) Module
20.4.4
The state sequencer allows a defined sequence of events to provide a trigger point for tracing of data in the
trace buffer. Once the S12XDBG module has been armed by setting the ARM bit in the DBGC1 register,
then state1 of the state sequencer is entered. Further transitions between the states are then controlled by
the state control registers and depend upon a selected trigger mode condition being met. From Final State
the only permitted transition is back to the disarmed state0. Transition between any of the states 1 to 3 is
not restricted. Each transition updates the SSF[2:0] flags in DBGSR accordingly to indicate the current
state.
Alternatively writing to the TRIG bit in DBGSC1, the Final State is entered and tracing starts immediately
if the TSOURCE bits are configured for tracing.
A tag hit through TAGHI/TAGLO brings the state sequencer immediately into state0, causes a breakpoint,
if breakpoints are enabled, and ends tracing immediately independent of the trigger alignment bits
TALIGN[1:0].
Independent of the state sequencer, each comparator channel can be individually configured to generate an
immediate breakpoint when a match occurs through the use of the BRK bits in the DBGxCTL registers.
Thus it is possible to generate an immediate breakpoint on selected channels, whilst a state sequencer
transition can be initiated by a match on other channels. If a debug session is ended by a trigger on a
channel with BRK = 1, the state sequencer transitions through Final State for a clock cycle to state0. This
is independent of tracing and breakpoint activity, thus with tracing and breakpoints disabled, the state
sequencer enters state0 and the debug module is disarmed.
An XGATE S/W breakpoint request, if enabled causes a transition to the State0 and generates a breakpoint
request to the S12XCPU immediately.
20.4.4.1
On entering Final State a trigger may be issued to the trace buffer according to the trace position control
as defined by the TALIGN field (see
DBGTCR are cleared then the trace buffer is disabled and the transition to Final State can only generate a
breakpoint request. In this case or upon completion of a tracing session when tracing is enabled, the ARM
774
State Sequence Control
Final State
(Disarmed)
State 0
ARM = 0
ARM = 0
Session Complete
(Disarm)
Figure 20-23. State Sequencer Diagram
ARM = 1
ARM = 0
MC9S12XDP512 Data Sheet, Rev. 2.21
Section
20.3.2.3”). If the TSOURCE bits in the trace control register
Final State
State1
State3
State2
Freescale Semiconductor

Related parts for MC9S12XD256VAG