ATmega64 Atmel Corporation, ATmega64 Datasheet - Page 179

no-image

ATmega64

Manufacturer Part Number
ATmega64
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega64

Flash (kbytes)
64 Kbytes
Pin Count
64
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
16
Hardware Qtouch Acquisition
No
Max I/o Pins
53
Ext Interrupts
8
Usb Speed
No
Usb Interface
No
Spi
1
Twi (i2c)
1
Uart
2
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
15
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
4
Eeprom (bytes)
2048
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
4
Output Compare Channels
8
Input Capture Channels
2
Pwm Channels
7
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA64
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AC
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AI
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AJ
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
ATM
Quantity:
5 400
Part Number:
ATmega64-16AU
Manufacturer:
ATMEL
Quantity:
9 500
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
3 589
Part Number:
ATmega64-16AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16AU
Manufacturer:
MICROCHIP/微芯
Quantity:
20 000
Company:
Part Number:
ATmega64-16AU
Quantity:
33
Part Number:
ATmega64-16AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega64-16MI
Manufacturer:
ATMEL
Quantity:
260
Part Number:
ATmega640-16AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Part Number:
ATmega640-16AU
Quantity:
80
Sending Frames with
9 Data Bits
2490Q–AVR–06/10
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8n bit in
UCSRnB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers r17:r16.
Note:
The ninth bit can be used for indicating an address frame when using Multi-processor Communi-
cation mode or for other protocol handling as for example synchronization.
Assembly Code Example
C Code Example
USART_Transmit:
void USART_Transmit( unsigned int data )
{
}
; Wait for empty transmit buffer
sbis UCSRnA,UDREn
rjmp USART_Transmit
; Copy ninth bit from r17 to TXB8
cbi
sbrc r17,0
sbi
; Put LSB data (r16) into buffer, sends the data
out
ret
/* Wait for empty transmit buffer */
while ( !( UCSRnA & (1<<UDREn)) )
/* Copy ninth bit to TXB8 */
UCSRnB &= ~(1<<TXB8n);
if ( data & 0x0100 )
/* Put data into buffer, sends the data */
UDRn = data;
1. These transmit functions are written to be general functions. They can be optimized if the con-
UCSRnB |= (1<<TXB8n);
tents of the UCSRnB is static. For example, only the TXB8n bit of the UCSRnB Register is
used after initialization.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
UCSRnB,TXB8n
UCSRnB,TXB8n
UDRn,r16
;
(1)
(1)
ATmega64(L)
179

Related parts for ATmega64