MCHC912B32CFUE8 Freescale Semiconductor, MCHC912B32CFUE8 Datasheet - Page 292

IC MCU 32K FLASH 8MHZ 80-QFP

MCHC912B32CFUE8

Manufacturer Part Number
MCHC912B32CFUE8
Description
IC MCU 32K FLASH 8MHZ 80-QFP
Manufacturer
Freescale Semiconductor
Series
HC12r
Datasheet

Specifications of MCHC912B32CFUE8

Core Processor
CPU12
Core Size
16-Bit
Speed
8MHz
Connectivity
SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
63
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
768 x 8
Ram Size
1K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
80-QFP
Cpu Family
HC12
Device Core Size
16b
Frequency (max)
8MHz
Interface Type
SCI/SPI
Total Internal Ram Size
1KB
# I/os (max)
63
Operating Supply Voltage (typ)
5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
4.5V
On-chip Adc
8-chx10-bit
Instruction Set Architecture
CISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
80
Package Type
PQFP
Package
80PQFP
Family Name
HC12
Maximum Speed
8 MHz
Operating Supply Voltage
5 V
Data Bus Width
16 Bit
Number Of Programmable I/os
63
Processor Series
HC912B
Core
HC12
Data Ram Size
1 KB
Maximum Clock Frequency
8 MHz
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
M68EVB912B32E
Minimum Operating Temperature
- 40 C
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MCHC912B32CFUE8
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Company:
Part Number:
MCHC912B32CFUE8
Quantity:
300
Development Support
Figure 18-3
shows the host receiving a logic 0 from the target MCU. Since the host is asynchronous to
the target MCU, there is a 0-to-1 cycle delay from the host-generated falling edge on BKGD to the start
of the bit time as perceived by the target MCU. The host initiates the bit time but the target MCU finishes
it. Since the target wants the host to receive a logic 0, it drives the BKGD pin low for 13 E-clock cycles,
then briefly drives it high to speed up the rising edge. The host samples the bit level about 10 cycles after
starting the bit time.
E CLOCK
TARGET MCU
HOST
DRIVE TO
HIGH IMPEDANCE
BKGD PIN
SPEEDUP PULSE
TARGET MCU
DRIVE AND
SPEEDUP PULSE
PERCEIVED
START OF BIT TIME
BKGD PIN
10 CYCLES
10 CYCLES
EARLIEST
START OF
NEXT BIT
HOST SAMPLES
BKGD PIN
Figure 18-3. BDM Target to Host Serial Bit Timing (Logic 0)
18.3.2 Enabling BDM Firmware Commands
BDM is available in all operating modes, but must be made active before firmware commands can be
executed. BDM is enabled by setting the ENBDM bit in the BDM STATUS register via the single-wire
interface (using a hardware command; WRITE_BD_BYTE at $FF01). BDM must then be activated to map
BDM registers and ROM to addresses $FF00 to $FFFF and to put the MCU in active background mode.
After the firmware is enabled, BDM can be activated by the hardware BACKGROUND command, by the
BDM tagging mechanism, or by the CPU BGND instruction. An attempt to activate BDM before firmware
has been enabled causes the MCU to resume normal instruction execution after a brief delay.
BDM becomes active at the next instruction boundary following execution of the BDM BACKGROUND
command, but tags activate BDM before a tagged instruction is executed.
In special single-chip mode, background operation is enabled and active immediately out of reset. This
active case replaces the M68HC11 boot function and allows programming a system with blank memory.
While BDM is active, a set of BDM control registers is mapped to addresses $FF00 to $FF06. The BDM
control logic uses these registers which can be read anytime by BDM logic, not user programs. Refer to
18.3.4 BDM Registers
for detailed descriptions.
Some on-chip peripherals have a BDM control bit which allows suspending the peripheral function during
BDM. For example, if the timer control is enabled, the timer counter is stopped while in BDM. Once normal
program flow is continued, the timer counter is re-enabled to simulate real-time operations.
M68HC12B Family Data Sheet, Rev. 9.1
292
Freescale Semiconductor

Related parts for MCHC912B32CFUE8