SI1011-A-GM Silicon Laboratories Inc, SI1011-A-GM Datasheet - Page 255

IC TXRX MCU + EZRADIOPRO

SI1011-A-GM

Manufacturer Part Number
SI1011-A-GM
Description
IC TXRX MCU + EZRADIOPRO
Manufacturer
Silicon Laboratories Inc
Datasheets

Specifications of SI1011-A-GM

Package / Case
42-QFN
Frequency
240MHz ~ 960MHz
Data Rate - Maximum
256kbps
Modulation Or Protocol
FSK, GFSK, OOK
Applications
General Purpose
Power - Output
20dBm
Sensitivity
-121dBm
Voltage - Supply
1.8 V ~ 3.6 V
Current - Receiving
18.5mA
Current - Transmitting
85mA
Data Interface
PCB, Surface Mount
Memory Size
8kB Flash, 768B RAM
Antenna Connector
PCB, Surface Mount
Number Of Receivers
1
Number Of Transmitters
1
Wireless Frequency
240 MHz to 960 MHz
Interface Type
UART, SMBus, SPI, PCA
Output Power
20 dBm
Operating Supply Voltage
0.9 V to 3.6 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Maximum Supply Current
4 mA
Minimum Operating Temperature
- 40 C
Modulation
FSK, GFSK, OOK
Protocol Supported
C2, SMBus
Core
8051
Program Memory Type
Flash
Program Memory Size
8 KB
Data Ram Size
768 B
Supply Current (max)
4 mA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Operating Temperature
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
336-1872-5

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
SI1011-A-GM
Manufacturer:
Silicon Laboratories Inc
Quantity:
135
23.3.1. Frequency Control
For calculating the necessary frequency register settings it is recommended that customers use Silicon
Labs’ Wireless Design Suite (WDS) or the EZRadioPRO Register Calculator worksheet (in Microsoft
Excel) available on the product website. These methods offer a simple method to quickly determine the
correct settings based on the application requirements. The following information can be used to calcu-
lated these values manually.
23.3.2. Frequency Programming
In order to receive or transmit an RF signal, the desired channel frequency, f
into the transceiver. Note that this frequency is the center frequency of the desired channel and not an LO
frequency. The carrier frequency is generated by a Fractional-N Synthesizer, using 10 MHz both as the ref-
erence frequency and the clock of the (3
mulators. This design was made to obtain the desired frequency resolution of the synthesizer. The overall
division ratio of the feedback loop consist of an integer part (N) and a fractional part (F).In a generic sense,
the output frequency of the synthesizer is as follows:
The fractional part (F) is determined by three different values, Carrier Frequency (fc[15:0]), Frequency Off-
set (fo[8:0]), and Frequency Deviation (fd[7:0]). Due to the fine resolution and high loop bandwidth of the
synthesizer, FSK modulation is applied inside the loop and is done by varying F according to the incoming
data; this is discussed further in “Frequency Deviation” on page 258. Also, a fixed offset can be added to
fine-tune the carrier frequency and counteract crystal tolerance errors. For simplicity assume that only the
fc[15:0] register will determine the fractional component. The equation for selection of the carrier frequency
is shown below:
XTAL Settling
Time
600us
Figure 23.3. RX Timing
rd
order) ΔΣ modulator. This modulator uses modulo 64000 accu-
f
OUT
Rev. 1.0
10
MHz
(
N
F
)
RX Packet
Si1010/1/2/3/4/5
carrier
, must be programmed
255

Related parts for SI1011-A-GM