EP2AGX45DF29I5N Altera, EP2AGX45DF29I5N Datasheet - Page 138

no-image

EP2AGX45DF29I5N

Manufacturer Part Number
EP2AGX45DF29I5N
Description
IC ARRIA II GX FPGA 45K 780FBGA
Manufacturer
Altera
Series
Arria II GXr

Specifications of EP2AGX45DF29I5N

Number Of Logic Elements/cells
42959
Number Of Labs/clbs
1805
Total Ram Bits
3435
Number Of I /o
364
Voltage - Supply
0.87 V ~ 0.93 V
Mounting Type
Surface Mount
Operating Temperature
-40°C ~ 100°C
Package / Case
780-FBGA
Family Name
Arria® II GX
Number Of Logic Blocks/elements
45125
# I/os (max)
364
Frequency (max)
500MHz
Operating Supply Voltage (typ)
900mV
Logic Cells
45125
Ram Bits
3565158.4
Operating Supply Voltage (min)
0.87V
Operating Supply Voltage (max)
0.93V
Operating Temp Range
-40C to 100C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
780
Package Type
FC-FBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of Gates
-
Lead Free Status / Rohs Status
Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP2AGX45DF29I5N
Manufacturer:
ALTERA
Quantity:
201
Part Number:
EP2AGX45DF29I5N
Manufacturer:
ALTERA
Quantity:
853
Part Number:
EP2AGX45DF29I5N
Manufacturer:
Altera
Quantity:
10 000
Part Number:
EP2AGX45DF29I5N
Manufacturer:
ALTERA
0
Part Number:
EP2AGX45DF29I5N
0
5–34
Arria II Device Handbook Volume 1: Device Interfaces and Integration
Programmable Duty Cycle
Programmable Phase Shift
The programmable duty cycle allows the PLLs to generate clock outputs with a
variable duty cycle. This feature is supported on the PLL post-scale counters. The
duty-cycle setting is achieved by a low and high time-count setting for the post-scale
counters. The Quartus II software uses the frequency input and the required multiply
or divide rate to determine the duty cycle choices. The post-scale counter value
determines the precision of the duty cycle. The precision is defined by 50% divided by
the post-scale counter value. For example, if the C0 counter is 10, steps of 5% are
possible for duty-cycle choices between 5% to 90%.
Combining the programmable duty cycle with programmable phase shift allows the
generation of precise non-overlapping clocks.
For Arria II GZ devices, if the PLL is in external feedback mode, set the duty cycle for
the counter driving the fbin pin to 50%.
Use phase shift to implement a robust solution for clock delays in Arria II devices.
Implement phase shift with a combination of the VCO phase output and the counter
starting time. A combination of the VCO phase output and counter starting time is the
most accurate method of inserting delays because it is purely based on counter
settings, which are independent of process, voltage, and temperature (PVT).
You can phase-shift the output clocks from the Arria II PLLs in either of these two
resolutions:
Fine-resolution phase shifts are implemented by allowing any of the output counters
(C[n..0]) or the m counter to use any of the eight phases of the VCO as the reference
clock. This allows you to adjust the delay time with a fine resolution. The minimum
delay time that you can insert with this method is defined in
Equation 5–1. Fine-Resolution Phase Shifts for Arria II Devices
where f
For example, if f
equals 156.25 ps. The PLL operating frequency, which is governed by the reference
clock frequency and the counter settings, defines this phase shift.
Fine resolution with VCO phase taps
Coarse resolution with counter starting time
R EF
is the input reference clock frequency.
REF
is 100 MHz, n is 1, and m is 8, then f
Φ
fine
=
1
8
T
VCO
=
8f
Chapter 5: Clock Networks and PLLs in Arria II Devices
VCO
1
=
8Mf
N
REF
VCO
is 800 MHz and
December 2010 Altera Corporation
Equation
PLLs in Arria II Devices
5–1.
Φ
fin e

Related parts for EP2AGX45DF29I5N