MC56F8345VFGE Freescale Semiconductor, MC56F8345VFGE Datasheet - Page 124

IC DSP 16BIT 60MHZ 128-LQFP

MC56F8345VFGE

Manufacturer Part Number
MC56F8345VFGE
Description
IC DSP 16BIT 60MHZ 128-LQFP
Manufacturer
Freescale Semiconductor
Series
56F8xxxr
Datasheet

Specifications of MC56F8345VFGE

Core Processor
56800
Core Size
16-Bit
Speed
60MHz
Connectivity
CAN, EBI/EMI, SCI, SPI
Peripherals
POR, PWM, Temp Sensor, WDT
Number Of I /o
49
Program Memory Size
136KB (68K x 16)
Program Memory Type
FLASH
Ram Size
6K x 16
Voltage - Supply (vcc/vdd)
2.25 V ~ 3.6 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 105°C
Package / Case
128-LQFP
Data Bus Width
16 bit
Processor Series
MC56F83xx
Core
56800E
Numeric And Arithmetic Format
Fixed-Point
Device Million Instructions Per Second
60 MIPs
Maximum Clock Frequency
60 MHz
Number Of Programmable I/os
49
Data Ram Size
8 KB
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Interface Type
SCI, SPI, CAN
Minimum Operating Temperature
- 40 C
For Use With
MC56F8367EVME - EVAL BOARD FOR MC56F83X
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC56F8345VFGE
Manufacturer:
Freescale Semiconductor
Quantity:
1 985
Part Number:
MC56F8345VFGE
Manufacturer:
MOTOLOLA
Quantity:
245
Part Number:
MC56F8345VFGE
Manufacturer:
FREESCALE
Quantity:
2 946
Part Number:
MC56F8345VFGE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC56F8345VFGE
Manufacturer:
FREESCALE
Quantity:
2 946
EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up,
the input clock will be below 12.8MHz, so PRDIV8 = FM_CLKDIV[6] = 0. Using the following equation
yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This
translates into an FM_CLKDIV[6:0] value of $13 or $14, respectively.
EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM
input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8 = FM_CLKDIV[6] = 1. Using the
following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of
181kHz. This translates to an FM_CLKDIV[6:0] value of $49 or $4A, respectively.
Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock
divider value must be shifted into the corresponding 7-bit data register. After the data register has been
updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout
sequence to commence. The controller must remain in this state until the erase sequence has completed.
For details, see the JTAG Section in the 56F8300 Peripheral User Manual.
Note:
7.2.4
The recommended method of unsecuring a programmed device for product analysis of field failures is via
124
When the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller
(by asserting TRST) and the device (by asserting external chip reset) to return to normal unsecured
operation.
Product Analysis
150[kHz]
150[kHz]
56F8345 Technical Data, Rev. 17
<
<
(
(
SYS_CLK
SYS_CLK
(DIV + 1)
(DIV + 1)
(2)
(2)
)
)
<
<
200[kHz]
200[kHz]
Freescale Semiconductor
Preliminary

Related parts for MC56F8345VFGE