MC56F8147VPYE Freescale Semiconductor, MC56F8147VPYE Datasheet - Page 74

IC DSP 16BIT 40MHZ 160-LQFP

MC56F8147VPYE

Manufacturer Part Number
MC56F8147VPYE
Description
IC DSP 16BIT 40MHZ 160-LQFP
Manufacturer
Freescale Semiconductor
Series
56F8xxxr
Datasheet

Specifications of MC56F8147VPYE

Core Processor
56800
Core Size
16-Bit
Speed
40MHz
Connectivity
EBI/EMI, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
76
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Ram Size
4K x 16
Voltage - Supply (vcc/vdd)
2.25 V ~ 3.6 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 105°C
Package / Case
160-LQFP
Data Bus Width
16 bit
Processor Series
MC56F81xx
Core
56800E
Data Ram Size
4 KB
Interface Type
SPI, SCI, CAN
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
76
Number Of Timers
2
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 40 C
On-chip Adc
4 x 12 bit, 4 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC56F8147VPYE
Manufacturer:
FREESCAL
Quantity:
253
Part Number:
MC56F8147VPYE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part 5 Interrupt Controller (ITCN)
5.1 Introduction
The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to
signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in
order to service this interrupt.
5.2 Features
The ITCN module design includes these distinctive features:
For further information, see
5.3 Functional Description
The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt
sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of
the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the
active interrupt requests for that level. Within a given priority level, zero is the highest priority, while
number 81 is the lowest.
5.3.1
Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest
priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the
vector number to determine the vector address. In this way, an offset is generated into the vector table for
each interrupt.
5.3.2
Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be
serviced. The following tables define the nesting requirements for each priority level.
74
Programmable priority levels for each IRQ
Two programmable Fast Interrupts
Notification to SIM module to restart clocks out of Wait and Stop modes
Drives initial address on the address bus after reset
1. Core status register bits indicating current interrupt mask within the core.
Normal Interrupt Handling
Interrupt Nesting
SR[9]
0
0
1
1
1
Table
Table 5-1 Interrupt Mask Bit Definition
SR[8]
0
1
0
1
4-5, Interrupt Vector Table Contents.
1
56F8347 Technical Data, Rev.11
Priorities 0, 1, 2, 3
Priorities 1, 2, 3
Priorities 2, 3
Priority 3
Permitted Exceptions
None
Priority 0
Priorities 0, 1
Priorities 0, 1, 2
Masked Exceptions
Freescale Semiconductor
Preliminary

Related parts for MC56F8147VPYE