AT32UC3A1256AU Atmel Corporation, AT32UC3A1256AU Datasheet - Page 336

no-image

AT32UC3A1256AU

Manufacturer Part Number
AT32UC3A1256AU
Description
Manufacturer
Atmel Corporation

Specifications of AT32UC3A1256AU

Flash (kbytes)
256 Kbytes
Pin Count
100
Max. Operating Frequency
66 MHz
Cpu
32-bit AVR
# Of Touch Channels
32
Hardware Qtouch Acquisition
No
Max I/o Pins
69
Ext Interrupts
69
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device + OTG
Spi
6
Twi (i2c)
1
Uart
4
Ssc
1
Ethernet
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
10
Adc Speed (ksps)
384
Resistive Touch Screen
No
Dac Channels
2
Dac Resolution (bits)
16
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
64
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
3.0-3.6 or (1.65-1.95+3.0-3.6)
Operating Voltage (vcc)
3.0-3.6 or (1.65-1.95+3.0-3.6)
Fpu
No
Mpu / Mmu
Yes / No
Timers
10
Output Compare Channels
16
Input Capture Channels
6
Pwm Channels
13
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
AT32UC3A1256AU-AUR
Manufacturer:
Atmel
Quantity:
10 000
32058K AVR32-01/12
26.7.8.5
26.7.8.6
26.7.8.7
Character Transmission
Character Reception
Receiver Timeout
The characters are sent by writing in the Transmit Holding Register (THR). The transmitter
reports two status bits in the Channel Status Register (CSR): TXRDY (Transmitter Ready),
which indicates that THR is empty and TXEMPTY, which indicates that all the characters written
in THR have been processed. When the current character processing is completed, the last
character written in THR is transferred into the Shift Register of the transmitter and THR
becomes empty, thus TXRDY rises.
Both TXRDY and TXEMPTY bits are low when the transmitter is disabled. Writing a character in
THR while TXRDY is low has no effect and the written character is lost.
If the USART is in SPI Slave Mode and if a character must be sent while the Transmit Holding
Register (THR) is empty, the UNRE (Underrun Error) bit is set. The TXD transmission line stays
at high level during all this time. The UNRE bit is cleared by writing the Control Register (CR)
with the RSTSTA (Reset Status) bit at 1.
In SPI Master Mode, the slave select line (NSS) is asserted at low level 1 Tbit before the trans-
mission of the MSB bit and released at high level 1 Tbit after the transmission of the LSB bit. So,
the slave select line (NSS) is always released between each character transmission and a mini-
mum delay of 3 Tbits always inserted. However, in order to address slave devices supporting the
CSAAT mode (Chip Select Active After Transfer), the slave select line (NSS) can be forced at
low level by writing the Control Register (CR) with the RTSEN bit at 1. The slave select line
(NSS) can be released at high level only by writing the Control Register (CR) with the RTSDIS
bit at 1 (for example, when all data have been transferred to the slave device).
In SPI Slave Mode, the transmitter does not require a falling edge of the slave select line (NSS)
to initiate a character transmission but only a low level. However, this low level must be present
on the slave select line (NSS) at least 1 Tbit before the first serial clock cycle corresponding to
the MSB bit.
When a character reception is completed, it is transferred to the Receive Holding Register
(RHR) and the RXRDY bit in the Status Register (CSR) rises. If a character is completed while
RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into RHR
and overwrites the previous one. The OVRE bit is cleared by writing the Control Register (CR)
with the RSTSTA (Reset Status) bit at 1.
To ensure correct behavior of the receiver in SPI Slave Mode, the master device sending the
frame must ensure a minimum delay of 1 Tbit between each character transmission. The
receiver does not require a falling edge of the slave select line (NSS) to initiate a character
reception but only a low level. However, this low level must be present on the slave select line
(NSS) at least 1 Tbit before the first serial clock cycle corresponding to the MSB bit.
Because the receiver baudrate clock is active only during data transfers in SPI Mode, a receiver
timeout is impossible in this mode, whatever the Time-out value is (field TO) in the Time-out
Register (RTOR).
AT32UC3A
336

Related parts for AT32UC3A1256AU