ATMEGA64M1-15MZ Atmel, ATMEGA64M1-15MZ Datasheet - Page 115

no-image

ATMEGA64M1-15MZ

Manufacturer Part Number
ATMEGA64M1-15MZ
Description
MCU AVR 64KB FLASH 3PSC 32-VQFN
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheet

Specifications of ATMEGA64M1-15MZ

Package / Case
32-VQFN
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Operating Temperature
-40°C ~ 125°C
Speed
16MHz
Eeprom Size
2K x 8
Core Processor
AVR
Program Memory Type
FLASH
Ram Size
4K x 8
Program Memory Size
64KB (64K x 8)
Data Converters
A/D 11x10b; D/A 1x10b
Oscillator Type
Internal
Peripherals
Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Connectivity
CAN, LIN, SPI, UART/USART
Core Size
8-Bit
Processor Series
ATMEGA64x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT, ATADAPCAN01
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Number Of I /o
-
Lead Free Status / Rohs Status
 Details
13.5.1
13.5.2
13.5.3
7647G–AVR–09/11
Input Capture Trigger Source
Noise Canceler
Using the Input Capture Unit
The ICRn Register can only be written when using a Waveform Generation mode that utilizes
the ICRn Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGMn3:0) bits must be set before the TOP value can be written to the ICRn
Register. When writing the ICRn Register the high byte must be written to the ICRnH I/O loca-
tion before the low byte is written to ICRnL.
For more information on how to access the 16-bit registers refer to
ters” on page
The ICF1 output can be used to retrigger the timer counter. It has the same effect than the
TOP signal.
The trigger sources for the Input Capture unit arethe Input Capture pin (ICP1A & ICP1B).
Be aware that changing trigger source can trigger a capture. The Input Capture Flag must
therefore be cleared after the change.
The Input Capture pin (ICPn) IS sampled using the same technique as for the Tn pin
11-1 on page
enabled, additional logic is inserted before the edge detector, which increases the delay by
four system clock cycles. Note that the input of the noise canceler and edge detector is always
enabled unless the Timer/Counter is set in a Waveform Generation mode that uses ICRn to
define TOP.
An Input Capture can be triggered by software by controlling the port of the ICPn pin.
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing
the output that in turn is used by the edge detector.
The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNCn) bit in
Timer/Counter Control Register B (TCCRnB). When enabled the noise canceler introduces
additional four system clock cycles of delay from a change applied to the input, to the update
of the ICRn Register. The noise canceler uses the system clock and is therefore not affected
by the prescaler.
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICRn Register before the next event occurs, the ICRn will
be overwritten with a new value. In this case the result of the capture will be incorrect.
When using the Input Capture interrupt, the ICRn Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.
Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.
109.
87). The edge detector is also identical. However, when the noise canceler is
Atmel ATmega16/32/64/M1/C1
“Accessing 16-bit Regis-
(Figure
115

Related parts for ATMEGA64M1-15MZ