EP3C10M164C8N Altera, EP3C10M164C8N Datasheet - Page 54

IC CYCLONE III FPGA 402MHZ BGA-164

EP3C10M164C8N

Manufacturer Part Number
EP3C10M164C8N
Description
IC CYCLONE III FPGA 402MHZ BGA-164
Manufacturer
Altera
Series
Cyclone IIIr
Datasheets

Specifications of EP3C10M164C8N

No. Of Logic Blocks
645
Family Type
Cyclone III
No. Of I/o's
106
I/o Supply Voltage
3.3V
Operating Frequency Max
402MHz
Operating Temperature Range
0°C To +85°C
Family Name
Cyclone III
Number Of Logic Blocks/elements
10320
# I/os (max)
106
Frequency (max)
402MHz
Process Technology
65nm
Operating Supply Voltage (typ)
1.2V
Logic Cells
10320
Ram Bits
423936
Operating Supply Voltage (min)
1.15V
Operating Supply Voltage (max)
1.25V
Operating Temp Range
0C to 85C
Operating Temperature Classification
Commercial
Mounting
Surface Mount
Pin Count
164
Package Type
MBGA
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
EP3C10M164C8N
Manufacturer:
ALTERA
0
3–18
Figure 3–17. Mixed Port Read-During-Write: Old Data Mode
Conflict Resolution
Cyclone III Device Handbook, Volume 1
f
q_b (asynch)
1
address_b
address_a
clk_a&b
wren_a
rden_b
data_a
Mixed-Port Read-During-Write Mode
This mode applies to a RAM in simple or true dual-port mode, which has one port
reading and the other port writing to the same address location with the same clock.
In this mode, you also have two output choices: Old Data mode or Don't Care mode.
In Old Data mode, a read-during-write operation to different ports causes the RAM
outputs to reflect the old data at that address location. In Don't Care mode, the same
operation results in a “Don't Care” or unknown value on the RAM outputs.
For more information about how to implement the desired behavior, refer to the
Megafunction User
Figure 3–17
behavior for the Old Data mode. In Don't Care mode, the old data is replaced with
“Don't Care”.
For mixed-port read-during-write operation with dual clocks, the relationship
between the clocks determines the output behavior of the memory. If you use the
same clock for the two clocks, the output is the old data from the address location.
However, if you use different clocks, the output is unknown during the mixed-port
read-during-write operation. This unknown value may be the old or new data at the
address location, depending on whether the read happens before or after the write.
When you are using M9K memory blocks in true dual-port mode, it is possible to
attempt two write operations to the same memory location (address). Because there is
no conflict resolution circuitry built into M9K memory blocks, this results in
unknown data being written to that location. Therefore, you must implement
conflict-resolution logic external to the M9K memory block.
A
shows a sample functional waveform of mixed port read-during-write
a (old data)
a
a
Guide.
B
A
C
B
D
b (old data)
Chapter 3: Memory Blocks in the Cyclone III Device Family
E
b
b
D
F
© December 2009 Altera Corporation
E
Design Considerations
RAM

Related parts for EP3C10M164C8N