PIC18F24J11 MICROCHIP [Microchip Technology], PIC18F24J11 Datasheet - Page 387

no-image

PIC18F24J11

Manufacturer Part Number
PIC18F24J11
Description
28/44-Pin, Low-Power, High-Performance USB Microcontrollers with nanoWatt XLP Technology
Manufacturer
MICROCHIP [Microchip Technology]
Datasheet

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PIC18F24J11-I/ML
Manufacturer:
MICROCHIP
Quantity:
49 000
Part Number:
PIC18F24J11-I/SO
Manufacturer:
Microchip Technology
Quantity:
1 960
25.4
There are two separate methods of measuring capaci-
tance with the CTMU. The first is the absolute method,
in which the actual capacitance value is desired. The
second is the relative method, in which the actual
capacitance is not needed, rather an indication of a
change in capacitance is required.
25.4.1
For absolute capacitance measurements, both the
current and capacitance calibration steps found in
Section 25.3 “Calibrating the CTMU Module”
should be followed. Capacitance measurements are
then performed using the following steps:
1.
2.
3.
4.
5.
6.
7.
8.
 2011 Microchip Technology Inc.
Initialize the A/D Converter.
Initialize the CTMU.
Set EDG1STAT.
Wait for a fixed delay, T.
Clear EDG1STAT.
Perform an A/D conversion.
Calculate the total capacitance, C
where I is known from the current source
measurement step (see Section 25.3.1 “Current
Source Calibration”), T is a fixed delay and V is
measured by performing an A/D conversion.
Subtract the stray and A/D capacitance
(C
Calibration”) from C
measured capacitance.
OFFSET
Measuring Capacitance with the
CTMU
ABSOLUTE CAPACITANCE
MEASUREMENT
from Section 25.3.2 “Capacitance
TOTAL
to determine the
TOTAL
= (I * T)/V,
PIC18F46J11 FAMILY
25.4.2
An application may not require precise capacitance
measurements. For example, when detecting a valid
press of a capacitance-based switch, detecting a rela-
tive change of capacitance is of interest. In this type of
application, when the switch is open (or not touched),
the total capacitance is the capacitance of the combina-
tion of the board traces, the A/D Converter, etc. A larger
voltage will be measured by the A/D Converter. When
the switch is closed (or is touched), the total
capacitance is larger due to the addition of the
capacitance of the human body to the above listed
capacitances, and a smaller voltage will be measured
by the A/D Converter.
Detecting capacitance changes is easily accomplished
with the CTMU using these steps:
1.
2.
3.
4.
5.
The voltage measured by performing the A/D conver-
sion is an indication of the relative capacitance. Note
that in this case, no calibration of the current source or
circuit capacitance measurement is needed. See
Example 25-4
capacitive touch switch.
Initialize the A/D Converter and the CTMU.
Set EDG1STAT.
Wait for a fixed delay.
Clear EDG1STAT.
Perform an A/D conversion.
RELATIVE CHARGE
MEASUREMENT
for a sample software routine for a
DS39932D-page 387

Related parts for PIC18F24J11