M68EVB908GB60E Freescale Semiconductor, M68EVB908GB60E Datasheet - Page 53

BOARD EVAL FOR MC9S08GB60

M68EVB908GB60E

Manufacturer Part Number
M68EVB908GB60E
Description
BOARD EVAL FOR MC9S08GB60
Manufacturer
Freescale Semiconductor
Type
MCUr
Datasheet

Specifications of M68EVB908GB60E

Contents
Module and Misc Hardware
Processor To Be Evaluated
MC9S08GB
Data Bus Width
8 bit
Interface Type
RS-232
Silicon Manufacturer
Freescale
Core Architecture
HCS08
Core Sub-architecture
HCS08
Silicon Core Number
MC9S08
Silicon Family Name
S08GB
Kit Contents
GB60 Evaluation Kit
Rohs Compliant
Yes
For Use With/related Products
MC9S08GB60
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
is no way to disengage security without completely erasing all FLASH locations. If KEYEN is 1, a secure
user program can temporarily disengage security by:
The security key can be written only from RAM, so it cannot be entered through background commands
without the cooperation of a secure user program. The FLASH memory cannot be accessed by read
operations while KEYACC is set.
The backdoor comparison key (NVBACKKEY through NVBACKKEY+7) is located in FLASH memory
locations in the nonvolatile register space so users can program these locations just as they would program
any other FLASH memory location. The nonvolatile registers are in the same 512-byte block of FLASH
as the reset and interrupt vectors, so block protecting that space also block protects the backdoor
comparison key. Block protects cannot be changed from user application programs, so if the vector space
is block protected, the backdoor security key mechanism cannot permanently change the block protect,
security settings, or the backdoor key.
Security can always be disengaged through the background debug interface by performing these steps:
4.6
The FLASH module has nine 8-bit registers in the high-page register space, three locations in the
nonvolatile register space in FLASH memory that are copied into three corresponding high-page control
registers at reset. There is also an 8-byte comparison key in FLASH memory. Refer to
Table 4-4
control bits only by their names. A Freescale-provided equate or header file normally is used to translate
these names into the appropriate absolute addresses.
Freescale Semiconductor
1. Writing 1 to KEYACC in the FCNFG register. This makes the FLASH module interpret writes to
2. Writing the user-entered key values to the NVBACKKEY through NVBACKKEY+7 locations.
3. Writing 0 to KEYACC in the FCNFG register. If the 8-byte key that was just written matches the
1. Disable any block protections by writing FPROT. FPROT can be written only with background
2. Mass erase FLASH, if necessary.
3. Blank check FLASH. Provided FLASH is completely erased, security is disengaged until the next
the backdoor comparison key locations (NVBACKKEY through NVBACKKEY+7) as values to
be compared against the key rather than as the first step in a FLASH program or erase command.
These writes must be done in order, starting with the value for NVBACKKEY and ending with
NVBACKKEY+7. STHX should not be used for these writes because these writes cannot be done
on adjacent bus cycles. User software normally would get the key codes from outside the MCU
system through a communication interface such as a serial I/O.
key stored in the FLASH locations, SEC01:SEC00 are automatically changed to 1:0 and security
will be disengaged until the next reset.
debug commands, not from application software.
reset.
To avoid returning to secure mode after the next reset, program NVOPT so SEC01:SEC00 = 1:0.
FLASH Registers and Control Bits
for the absolute address assignments for all FLASH registers. This section refers to registers and
MC9S08GB/GT Data Sheet, Rev. 2.3
FLASH Registers and Control Bits
Table 4-3
and
53

Related parts for M68EVB908GB60E