ATMEGA128A-ANR Atmel, ATMEGA128A-ANR Datasheet - Page 119

IC MCU AVR 128K FLASH 64TQFP

ATMEGA128A-ANR

Manufacturer Part Number
ATMEGA128A-ANR
Description
IC MCU AVR 128K FLASH 64TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128A-ANR

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP
Core
AVR8
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128A-ANR
Manufacturer:
Atmel
Quantity:
10 000
8151H–AVR–02/11
Figure 15-2. Counter Unit Block Diagram
Signal description (internal signals):
The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNTnH) con-
taining the upper 8 bits of the counter, and Counter Low (TCNTnL) containing the lower 8 bits.
The TCNTnH Register can only be indirectly accessed by the CPU. When the CPU does an
access to the TCNTnH I/O location, the CPU accesses the high byte Temporary Register
(TEMP). The Temporary Register is updated with the TCNTnH value when the TCNTnL is read,
and TCNTnH is updated with the Temporary Register value when TCNTnL is written. This
allows the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit
data bus. It is important to notice that there are special cases of writing to the TCNTn Register
when the counter is counting that will give unpredictable results. The special cases are
described in the sections where they are of importance.
Depending on the mode of operation used, the counter is cleared, incremented, or decremented
at each Timer Clock (clk
source, selected by the Clock Select bits (CSn2:0). When no clock source is selected (CSn2:0 =
0) the timer is stopped. However, the TCNTn value can be accessed by the CPU, independent
of whether clk
count operations.
The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGMn3:0) located in the Timer/Counter Control Registers A and B (TCCRnA and TCCRnB).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the output compare outputs OCnx. For more details about advanced counting
sequences and waveform generation, see
The Timer/Counter Overflow (TOVn) flag is set according to the mode of operation selected by
the WGMn3:0 bits. TOVn can be used for generating a CPU interrupt.
Count
Direction
Clear
clk
TOP
BOTTOM
TCNTnH (8-bit) TCNTnL (8-bit)
TEMP (8-bit)
T
n
TCNTn (16-bit Counter)
T
n
DATA BUS
is present or not. A CPU write overrides (has priority over) all counter clear or
T
n
(8-bit)
). The clk
Increment or decrement TCNTn by 1.
Select between increment and decrement.
Clear TCNTn (set all bits to zero).
Timer/Counter clock.
Signalize that TCNTn has reached maximum value.
Signalize that TCNTn has reached minimum value (zero).
Direction
Count
T
Clear
n
can be generated from an external or internal clock
“Modes of Operation” on page
Control Logic
TOP
BOTTOM
TOVn
(Int.Req.)
clk
Tn
( From Prescaler )
Clock Select
Detector
ATmega128A
Edge
125.
Tn
119

Related parts for ATMEGA128A-ANR