ATmega16U2 Atmel Corporation, ATmega16U2 Datasheet - Page 235

no-image

ATmega16U2

Manufacturer Part Number
ATmega16U2
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16U2

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
22
Ext Interrupts
21
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
5
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16U2
Manufacturer:
ATMEL
Quantity:
853
Part Number:
ATMEGA16U2
Manufacturer:
ST
0
Part Number:
ATmega16U2-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16U2-MU
Manufacturer:
RALINK
Quantity:
2 400
Company:
Part Number:
ATmega16U2-MU
Quantity:
250
23.8.7
23.8.8
23.8.9
7799D–AVR–11/10
Setting the Boot Loader Lock Bits by SPM
EEPROM Write Prevents Writing to SPMCSR
Reading the Fuse and Lock Bits from Software
RWWSB by writing the RWWSRE. See
page 237
To set the Boot Loader Lock bits, write the desired data to R0, write “X0001001” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The only accessible Lock bits
are the Boot Lock bits that may prevent the Application and Boot Loader section from any soft-
ware update by the MCU.
See
Flash access.
If bits 5..2 in R0 are cleared (zero), the corresponding Boot Lock bit will be programmed if an
SPM instruction is executed within four cycles after BLBSET and SPMEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended to
load the Z-pointer with 0x0001 (same as used for reading the lO
is also recommended to set bits 7, 6, 1, and 0 in R0 to “1” when writing the Lock bits. When pro-
gramming the Lock bits the entire Flash can be read during the operation.
Note that an EEPROM write operation will block all software programming to Flash. Reading the
Fuses and Lock bits from software will also be prevented during the EEPROM write operation. It
is recommended that the user checks the status bit (EEPE) in the EECR Register and verifies
that the bit is cleared before writing to the SPMCSR Register.
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SPMEN bits in SPMCSR. When an (E)LPM
instruction is executed within three CPU cycles after the BLBSET and SPMEN bits are set in
SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLBSET and
SPMEN bits will auto-clear upon completion of reading the Lock bits or if no (E)LPM instruction
is executed within three CPU cycles or no SPM instruction is executed within four CPU cycles.
When BLBSET and SPMEN are cleared, (E)LPM will work as described in the Instruction set
Manual.
The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SPMEN bits in SPMCSR. When an (E)LPM instruction is executed within three cycles after
the BLBSET and SPMEN bits are set in the SPMCSR, the value of the Fuse Low byte (FLB) will
be loaded in the destination register as shown below. Refer to
detailed description and mapping of the Fuse Low byte.
Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an (E)LPM
instruction is executed within three cycles after the BLBSET and SPMEN bits are set in the
SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register as
Bit
R0
Bit
Rd
Bit
Rd
Table 23-2
for an example.
7
1
7
7
FLB7
and
Table 23-3
6
FLB6
6
1
6
for how the different settings of the Boot Loader bits affect the
5
FLB5
5
BLB12
5
BLB12
“Simple Assembly Code Example for a Boot Loader” on
4
FLB4
4
BLB11
4
BLB11
ATmega8U2/16U2/32U2
3
BLB02
3
BLB02
3
FLB3
2
BLB01
2
BLB01
2
FLB2
ck
Table 25-5 on page 248
bits). For future compatibility it
1
1
1
LB2
1
FLB1
0
1
0
LB1
0
FLB0
for a
235

Related parts for ATmega16U2