ATmega16U2 Atmel Corporation, ATmega16U2 Datasheet - Page 84

no-image

ATmega16U2

Manufacturer Part Number
ATmega16U2
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16U2

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
22
Ext Interrupts
21
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
5
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16U2
Manufacturer:
ATMEL
Quantity:
853
Part Number:
ATMEGA16U2
Manufacturer:
ST
0
Part Number:
ATmega16U2-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16U2-MU
Manufacturer:
RALINK
Quantity:
2 400
Company:
Part Number:
ATmega16U2-MU
Quantity:
250
13. External Interrupts
13.1
13.2
13.2.1
7799D–AVR–11/10
Overview
Register Description
EICRA – External Interrupt Control Register A
The External Interrupts are triggered by the INT[7:0] pin or any of the PCINT[12:0] pins. Observe
that, if enabled, the interrupts will trigger even if the INT[7:0] or PCINT[12:0] pins are configured
as outputs. This feature provides a way of generating a software interrupt.
The Pin change interrupt PCI0 will trigger if any enabled PCINT[7:0] pin toggles. PCMSK0 Reg-
ister control which pins contribute to the pin change interrupts. The Pin change interrupt PCI1
will trigger if any enabled PCINT[12:8] pin toggles. PCMSK1 Register control which pins contrib-
ute to the pin change interrupts. Pin change interrupts on PCINT[12:0] are detected
asynchronously. This implies that these interrupts can be used for waking the part also from
sleep modes other than Idle mode.
The External Interrupts can be triggered by a falling or rising edge or a low level. This is set up
as indicated in the specification for the External Interrupt Control Registers – EICRA (INT[3:0])
and EICRB (INT[7:4]). When the external interrupt is enabled and is configured as level trig-
gered, the interrupt will trigger as long as the pin is held low. Note that recognition of falling or
rising edge interrupts on INT[7:4] requires the presence of an I/O clock, described in
Clock and Clock Options” on page
detected asynchronously. This implies that these interrupts can be used for waking the part also
from sleep modes other than Idle mode. The I/O clock is halted in all sleep modes except Idle
mode.
Note that if a level triggered interrupt is used for wake-up from Power-down, the required level
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described
in
The External Interrupt Control Register A contains control bits for interrupt sense control.
• Bits 7:0 – ISC31, ISC30 – ISC00, ISC00: External Interrupt 3:0 Sense Control Bits
The External Interrupts 3:0 are activated by the external pins INT[3:0] if the SREG I-flag and the
corresponding interrupt mask in the EIMSK is set. The level and edges on the external pins that
activate the interrupts are defined in
nously. Pulses on INT[3:0] pins wider than the minimum pulse width given in
Characteristics” on page 268
generate an interrupt. If low level interrupt is selected, the low level must be held until the com-
pletion of the currently executing instruction to generate an interrupt. If enabled, a level triggered
interrupt will generate an interrupt request as long as the pin is held low. When changing the
ISCn bit, an interrupt can occur. Therefore, it is recommended to first disable INTn by clearing its
Interrupt Enable bit in the EIMSK Register. Then, the ISCn bit can be changed. Finally, the INTn
Bit
(0x69)
Read/Write
Initial Value
“System Clock and Clock Options” on page
ISC31
R/W
7
0
ISC30
R/W
6
0
will generate an interrupt. Shorter pulses are not guaranteed to
ISC21
R/W
26. Low level interrupts and the edge interrupt on INT[3:0] are
5
0
Table
ISC20
R/W
4
0
13-1. Edges on INT[3:0] are registered asynchro-
26.
ATmega8U2/16U2/32U2
ISC11
R/W
3
0
ISC10
R/W
2
0
ISC01
R/W
1
0
“External Interrupts
ISC00
R/W
0
0
EICRA
“System
84

Related parts for ATmega16U2