ATmega16U2 Atmel Corporation, ATmega16U2 Datasheet - Page 44

no-image

ATmega16U2

Manufacturer Part Number
ATmega16U2
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATmega16U2

Flash (kbytes)
16 Kbytes
Pin Count
32
Max. Operating Frequency
16 MHz
Cpu
8-bit AVR
# Of Touch Channels
12
Hardware Qtouch Acquisition
No
Max I/o Pins
22
Ext Interrupts
21
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
2
Uart
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Analog Comparators
1
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
0.5
Eeprom (bytes)
512
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
2.7 to 5.5
Operating Voltage (vcc)
2.7 to 5.5
Fpu
No
Mpu / Mmu
no / no
Timers
2
Output Compare Channels
5
Input Capture Channels
1
Pwm Channels
4
32khz Rtc
No
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA16U2
Manufacturer:
ATMEL
Quantity:
853
Part Number:
ATMEGA16U2
Manufacturer:
ST
0
Part Number:
ATmega16U2-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATmega16U2-MU
Manufacturer:
RALINK
Quantity:
2 400
Company:
Part Number:
ATmega16U2-MU
Quantity:
250
9.9
9.9.1
9.9.2
9.9.3
9.9.4
9.9.5
7799D–AVR–11/10
Minimizing Power Consumption
Analog Comparator
Brown-out Detector
Internal Voltage Reference
Watchdog Timer
Port Pins
when stopping the clock will remain occupied, hence the peripheral should in most cases be dis-
abled before stopping the clock. Waking up a module, which is done by clearing the bit in PRR,
puts the module in the same state as before shutdown.
Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption.
There are several issues to consider when trying to minimize the power consumption in an AVR
controlled system. In general, sleep modes should be used as much as possible, and the sleep
mode should be selected so that as few as possible of the device’s functions are operating. All
functions not needed should be disabled. In particular, the following modules may need special
consideration when trying to achieve the lowest possible power consumption.
When entering Idle mode, the Analog Comparator should be disabled if not used. In other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator is
set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. Refer to
configure the Analog Comparator.
If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute sig-
nificantly to the total current consumption. Refer to
on how to configure the Brown-out Detector.
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, or the
Analog Comparator. If these modules are disabled as described in the sections above, the inter-
nal voltage reference will be disabled and it will not be consuming power. When turned on again,
the user must allow the reference to start up before the output is used. If the reference is kept on
in sleep mode, the output can be used immediately. Refer to
page 51
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes, and hence, always consume
power. In the deeper sleep modes, this will contribute significantly to the total current consump-
tion. Refer to
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where the I/O
clock (clk
power is consumed by the input logic when not needed. In some cases, the input logic is needed
for detecting wake-up conditions, and it will then be enabled. Refer to the section
Enable and Sleep Modes” on page 71
for details on the start-up time.
I/O
) is stopped, the input buffers of the device will be disabled. This ensures that no
“Interrupts” on page 64
for details on how to configure the Watchdog Timer.
“Analog Comparator” on page 223
for details on which pins are enabled. If the input buffer is
ATmega8U2/16U2/32U2
“Brown-out Detection” on page 50
“Internal Voltage Reference” on
for details on how to
“Digital Input
for details
44

Related parts for ATmega16U2