SAM9XE512 Atmel Corporation, SAM9XE512 Datasheet - Page 663

no-image

SAM9XE512

Manufacturer Part Number
SAM9XE512
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of SAM9XE512

Flash (kbytes)
512 Kbytes
Pin Count
217
Max. Operating Frequency
180 MHz
Cpu
ARM926
Hardware Qtouch Acquisition
No
Max I/o Pins
96
Ext Interrupts
96
Usb Transceiver
3
Usb Speed
Full Speed
Usb Interface
Host, Device
Spi
2
Twi (i2c)
2
Uart
6
Ssc
1
Ethernet
1
Sd / Emmc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
Yes
Adc Channels
4
Adc Resolution (bits)
10
Adc Speed (ksps)
312
Resistive Touch Screen
No
Temp. Sensor
No
Crypto Engine
No
Sram (kbytes)
32
Self Program Memory
NO
External Bus Interface
1
Dram Memory
sdram
Nand Interface
Yes
Picopower
No
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.8/3.3
Operating Voltage (vcc)
1.65 to 1.95
Fpu
No
Mpu / Mmu
No / Yes
Timers
6
Output Compare Channels
6
Input Capture Channels
6
32khz Rtc
Yes
Calibrated Rc Oscillator
No
38.3.2.3
6254C–ATARM–22-Jan-10
Transmit Buffer
ter may be any word-aligned address, provided that there are at least 2048 word locations
available between the pointer and the top of the memory.
Section 3.6 of the AMBA 2.0 specification states that bursts should not cross 1K boundaries. As
receive buffer manager writes are bursts of two words, to ensure that this does not occur, it is
best to write the pointer register with the least three significant bits set to zero. As receive buffers
are used, the receive buffer manager sets bit zero of the first word of the descriptor to indicate
used. If a receive error is detected the receive buffer currently being written is recovered. Previ-
ous buffers are not recovered. Software should search through the used bits in the buffer
descriptors to find out how many frames have been received. It should be checking the start-of-
frame and end-of-frame bits, and not rely on the value returned by the receive buffer queue
pointer register which changes continuously as more buffers are used.
For CRC errored frames, excessive length frames or length field mismatched frames, all of
which are counted in the statistics registers, it is possible that a frame fragment might be stored
in a sequence of receive buffers. Software can detect this by looking for start of frame bit set in a
buffer following a buffer with no end of frame bit set.
For a properly working Ethernet system, there should be no excessively long frames or frames
greater than 128 bytes with CRC/FCS errors. Collision fragments are less than 128 bytes long.
Therefore, it is a rare occurrence to find a frame fragment in a receive buffer.
If bit zero is set when the receive buffer manager reads the location of the receive buffer, then
the buffer has already been used and cannot be used again until software has processed the
frame and cleared bit zero. In this case, the DMA block sets the buffer not available bit in the
receive status register and triggers an interrupt.
If bit zero is set when the receive buffer manager reads the location of the receive buffer and a
frame is being received, the frame is discarded and the receive resource error statistics register
is incremented.
A receive overrun condition occurs when bus was not granted in time or because HRESP was
not OK (bus error). In a receive overrun condition, the receive overrun interrupt is asserted and
the buffer currently being written is recovered. The next frame received with an address that is
recognized reuses the buffer.
If bit 17 of the network configuration register is set, the FCS of received frames shall not be cop-
ied to memory. The frame length indicated in the receive status field shall be reduced by four
bytes in this case.
Frames to be transmitted are stored in one or more transmit buffers. Transmit buffers can be
between 0 and 2047 bytes long, so it is possible to transmit frames longer than the maximum
length specified in IEEE Standard 802.3. Zero length buffers are allowed. The maximum number
of buffers permitted for each transmit frame is 128.
The start location for each transmit buffer is stored in memory in a list of transmit buffer descrip-
tors at a location pointed to by the transmit buffer queue pointer register. Each list entry consists
of two words, the first being the byte address of the transmit buffer and the second containing
the transmit control and status. Frames can be transmitted with or without automatic CRC gen-
eration. If CRC is automatically generated, pad is also automatically generated to take frames to
a minimum length of 64 bytes.
descriptor list. To transmit frames, the buffer descriptors must be initialized by writing an appro-
priate byte address to bits 31 to 0 in the first word of each list entry. The second transmit buffer
AT91SAM9XE128/256/512 Preliminary
Table 38-2 on page 664
defines an entry in the transmit buffer
663

Related parts for SAM9XE512