MC9S12NE64VTU Freescale Semiconductor, MC9S12NE64VTU Datasheet - Page 407

IC MCU 25MHZ ETHERNET/PHY 80TQFP

MC9S12NE64VTU

Manufacturer Part Number
MC9S12NE64VTU
Description
IC MCU 25MHZ ETHERNET/PHY 80TQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12NE64VTU

Mfg Application Notes
MC9S12NE64 Integrated Ethernet Controller Implementing an Ethernet Interface with the MC9S12NE64 Web Server Development with MC9S12NE64 and Open TCP
Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
EBI/EMI, Ethernet, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
38
Program Memory Size
64KB (64K x 8)
Program Memory Type
FLASH
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
2.375 V ~ 3.465 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 105°C
Package / Case
80-TQFP Exposed Pad, 80-eTQFP, 80-HTQFP, 80-VQFP
Data Bus Width
16 bit
Data Ram Size
8 KB
Interface Type
I2C, SCI, SPI
Maximum Clock Frequency
25 MHz
Number Of Programmable I/os
70
Number Of Timers
16 bit
Operating Supply Voltage
- 0.3 V to + 3 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Minimum Operating Temperature
- 65 C
On-chip Adc
10 bit
For Use With
EVB9S12NE64E - BOARD EVAL FOR 9S12NE64DEMO9S12NE64E - DEMO BOARD FOR 9S12NE64
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Eeprom Size
-
Lead Free Status / Rohs Status
 Details

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC9S12NE64VTU
Manufacturer:
FREESCALE
Quantity:
1 831
Part Number:
MC9S12NE64VTU
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12NE64VTUE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC9S12NE64VTUE
Manufacturer:
ALTERA
0
Part Number:
MC9S12NE64VTUE
Manufacturer:
FREESCALE
Quantity:
20 000
15.3.2.8
Read: Anytime (provided this register is in the map).
Write: Each bit has specific write conditions. Please refer to the descriptions of each bit on the following
pages.
Port E serves as general-purpose I/O or as system and bus control signals. The PEAR register is used to
choose between the general-purpose I/O function and the alternate control functions. When an alternate
control function is selected, the associated DDRE bits are overridden.
The reset condition of this register depends on the mode of operation because bus control signals are
needed immediately after reset in some modes. In normal single-chip mode, no external bus control signals
are needed so all of port E is configured for general-purpose I/O. In normal expanded modes, only the E
clock is configured for its alternate bus control function and the other bits of port E are configured for
general-purpose I/O. As the reset vector is located in external memory, the E clock is required for this
access. R/W is only needed by the system when there are external writable resources. If the normal
expanded system needs any other bus control signals, PEAR would need to be written before any access
that needed the additional signals. In special test and emulation modes, IPIPE1, IPIPE0, E, LSTRB, and
R/W are configured out of reset as bus control signals.
This register is not in the on-chip memory map in expanded and special peripheral modes. Therefore, these
accesses will be echoed externally.
Freescale Semiconductor
Normal Expanded Wide
Emulation Expanded
Emulation Expanded
Special Single Chip
Normal Single Chip
Normal Expanded
Special Test
Peripheral
Port E Assignment Register (PEAR)
Narrow
Narrow
Reset
Wide
W
R
NOACCE
0
0
0
1
1
0
0
0
7
Figure 15-12. Port E Assignment Register (PEAR)
= Unimplemented or Reserved
0
0
0
0
0
0
0
0
0
6
MC9S12NE64 Data Sheet, Rev. 1.1
PIPOE
0
1
0
1
1
0
0
0
5
NECLK
4
0
0
0
0
0
1
0
0
LSTRE
0
1
0
1
1
0
0
0
3
RDWE
Memory Map and Register Definition
0
1
0
1
1
0
0
0
2
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
407

Related parts for MC9S12NE64VTU