MC912DG128ACPV Freescale Semiconductor, MC912DG128ACPV Datasheet - Page 326

no-image

MC912DG128ACPV

Manufacturer Part Number
MC912DG128ACPV
Description
IC MCU 128K FLASH 8MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HC12r
Datasheet

Specifications of MC912DG128ACPV

Core Processor
CPU12
Core Size
16-Bit
Speed
8MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
69
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 16x8/10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC912DG128ACPV
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128ACPV
Manufacturer:
FREE
Quantity:
20 000
Part Number:
MC912DG128ACPV 5K91D
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC912DG128ACPVE
Manufacturer:
MICREL
Quantity:
9 982
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 200
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 970
Part Number:
MC912DG128ACPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 970
Part Number:
MC912DG128ACPVER
Manufacturer:
STM
Quantity:
1 244
Part Number:
MC912DG128ACPVER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
MSCAN Controller
18.3 External Pins
Technical Data
326
The msCAN12 is the specific implementation of the Motorola scalable
CAN (msCAN) concept targeted for the Motorola M68HC12
microcontroller family.
The module is a communication controller implementing the CAN 2.0
A/B protocol as defined in the BOSCH specification dated September
1991.
The CAN protocol was primarily, but not only, designed to be used as a
vehicle serial data bus, meeting the specific requirements of this field:
real-time processing, reliable operation in the EMI environment of a
vehicle, cost-effectiveness and required bandwidth.
msCAN12 utilizes an advanced buffer arrangement resulting in a
predictable real-time behavior and simplifies the application software.
The msCAN12 uses 2 external pins, 1 input (RxCAN) and 1 output
(TxCAN). The TxCAN output pin represents the logic level on the CAN:
0 is for a dominant state, and 1 is for a recessive state.
RxCAN is on bit 0 of Port CAN, TxCAN is on bit 1. The remaining six pins
of Port CAN are controlled by registers in the msCAN12 address space
(see
Port CAN Data Direction Register
A typical CAN system with msCAN12 is shown in
Each CAN station is connected physically to the CAN bus lines through
a transceiver chip. The transceiver is capable of driving the large current
needed for the CAN and has current protection, against defected CAN
or defected stations.
Freescale Semiconductor, Inc.
For More Information On This Product,
msCAN12 Port CAN Control Register (PCTLCAN)
Go to: www.freescale.com
MSCAN Controller
(DDRCAN)).
MC68HC912DT128A — Rev 4.0
Figure 18-1
and
msCAN12
MOTOROLA
below.

Related parts for MC912DG128ACPV