MC912DG128ACPV Freescale Semiconductor, MC912DG128ACPV Datasheet - Page 331

no-image

MC912DG128ACPV

Manufacturer Part Number
MC912DG128ACPV
Description
IC MCU 128K FLASH 8MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HC12r
Datasheet

Specifications of MC912DG128ACPV

Core Processor
CPU12
Core Size
16-Bit
Speed
8MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
69
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 16x8/10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC912DG128ACPV
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128ACPV
Manufacturer:
FREE
Quantity:
20 000
Part Number:
MC912DG128ACPV 5K91D
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC912DG128ACPVE
Manufacturer:
MICREL
Quantity:
9 982
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 200
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 970
Part Number:
MC912DG128ACPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 970
Part Number:
MC912DG128ACPVER
Manufacturer:
STM
Quantity:
1 244
Part Number:
MC912DG128ACPVER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
MC68HC912DT128A — Rev 4.0
MOTOROLA
called local priority field (PRIO) (see
(TBPR)).
In order to transmit a message, the CPU12 has to identify an available
transmit buffer which is indicated by a set transmit buffer empty (TXE)
flag in the msCAN12 transmitter flag register (CTFLG) (see
Transmitter Flag Register
The CPU12 then stores the identifier, the control bits and the data
content into one of the transmit buffers. Finally, the buffer has to be
flagged as being ready for transmission by clearing the TXE flag.
The msCAN12 will then schedule the message for transmission and will
signal the successful transmission of the buffer by setting the TXE flag.
A transmit interrupt will be emitted
used to drive the application software to re-load the buffer.
In case more than one buffer is scheduled for transmission when the
CAN bus becomes available for arbitration, the msCAN12 uses the local
priority setting of the three buffers for prioritizing. For this purpose every
transmit buffer has an 8-bit local priority field (PRIO). The application
software sets this field when the message is set up. The local priority
reflects the priority of this particular message relative to the set of
messages being emitted from this node. The lowest binary value of the
PRIO field is defined to be the highest priority.
The internal scheduling process takes places whenever the msCAN12
arbitrates for the bus. This is also the case after the occurrence of a
transmission error.
When a high priority message is scheduled by the application software
it may become necessary to abort a lower priority message being set up
in one of the three transmit buffers. As messages that are already under
transmission can not be aborted, the user has to request the abort by
setting the corresponding abort request flag (ABTRQ) in the
transmission control register (CTCR). The msCAN12 grants the request,
if possible, by setting the corresponding abort request acknowledge
(ABTAK) and the TXE flag in order to release the buffer and by emitting
1. The transmit interrupt will occur only if not masked. A polling scheme can be applied on TXE
also.
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
MSCAN Controller
(CTFLG)).
(1)
Transmit Buffer Priority Registers
when TXE is set and this can be
MSCAN Controller
Message Storage
Technical Data
msCAN12
331

Related parts for MC912DG128ACPV