MC912DG128ACPV Freescale Semiconductor, MC912DG128ACPV Datasheet - Page 398

no-image

MC912DG128ACPV

Manufacturer Part Number
MC912DG128ACPV
Description
IC MCU 128K FLASH 8MHZ 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HC12r
Datasheet

Specifications of MC912DG128ACPV

Core Processor
CPU12
Core Size
16-Bit
Speed
8MHz
Connectivity
CAN, I²C, SCI, SPI
Peripherals
POR, PWM, WDT
Number Of I /o
69
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
8K x 8
Voltage - Supply (vcc/vdd)
4.5 V ~ 5.5 V
Data Converters
A/D 16x8/10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
MC912DG128ACPV
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128ACPV
Manufacturer:
FREE
Quantity:
20 000
Part Number:
MC912DG128ACPV 5K91D
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
MC912DG128ACPVE
Manufacturer:
MICREL
Quantity:
9 982
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 200
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 970
Part Number:
MC912DG128ACPVE
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
MC912DG128ACPVE
Manufacturer:
FREESCALE
Quantity:
1 970
Part Number:
MC912DG128ACPVER
Manufacturer:
STM
Quantity:
1 244
Part Number:
MC912DG128ACPVER
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Development Support
20.4.2 BDM Serial Interface
Technical Data
398
In special single-chip mode, background operation is enabled and active
immediately out of reset. This active case replaces the M68HC11 boot
function, and allows programming a system with blank memory.
While BDM is active, a set of BDM control registers are mapped to
addresses $FF00 to $FF06. The BDM control logic uses these registers
which can be read anytime by BDM logic, not user programs. Refer to
BDM Registers
Some on-chip peripherals have a BDM control bit which allows
suspending the peripheral function during BDM. For example, if the timer
control is enabled, the timer counter is stopped while in BDM. Once
normal program flow is continued, the timer counter is re-enabled to
simulate real-time operations.
The BDM serial interface requires the external controller to generate a
falling edge on the BKGD pin to indicate the start of each bit time. The
external controller provides this falling edge whether data is transmitted
or received.
BKGD is a pseudo-open-drain pin that can be driven either by an
external controller or by the MCU. Data is transferred MSB first at 16
BDMCLK cycles per bit (nominal speed). The interface times out if 512
BDMCLK cycles occur between falling edges from the host. The
hardware clears the command register when a time-out occurs.
The BKGD pin can receive a high or low level or transmit a high or low
level. The following diagrams show timing for each of these cases.
Interface timing is synchronous to MCU clocks but asynchronous to the
external host. The internal clock signal is shown for reference in counting
cycles.
Figure 20-1
BKGD pin of a target MC68HC912DT128A MCU. The host is
asynchronous to the target so there is a 0-to-1 cycle delay from the host-
generated falling edge to where the target perceives the beginning of the
bit time. Ten target B cycles later, the target senses the bit level on the
BKGD pin. Typically the host actively drives the pseudo-open-drain
Freescale Semiconductor, Inc.
For More Information On This Product,
shows an external host transmitting a logic one or zero to the
Go to: www.freescale.com
Development Support
for detailed descriptions.
MC68HC912DT128A — Rev 4.0
MOTOROLA

Related parts for MC912DG128ACPV