S9S12XS256J0CAL Freescale Semiconductor, S9S12XS256J0CAL Datasheet - Page 410

no-image

S9S12XS256J0CAL

Manufacturer Part Number
S9S12XS256J0CAL
Description
MCU 256K FLASH 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of S9S12XS256J0CAL

Core Processor
HCS12X
Core Size
16-Bit
Speed
40MHz
Connectivity
CAN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
91
Program Memory Size
256KB (256K x 8)
Program Memory Type
FLASH
Eeprom Size
8K x 8
Ram Size
12K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 16x12b
Oscillator Type
External
Operating Temperature
-40°C ~ 85°C
Package / Case
112-LQFP
Processor Series
S12XS
Core
HCS12
Data Bus Width
16 bit
Data Ram Size
12 KB
Interface Type
CAN, SCI, SPI
Maximum Clock Frequency
40 MHz
Number Of Programmable I/os
91
Number Of Timers
12
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
DEMO9S12XSFAME, EVB9S12XEP100
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 16 Channel
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S12XS256J0CAL
Manufacturer:
FREESCALE
Quantity:
3 598
Part Number:
S9S12XS256J0CAL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S12XS256J0CAL
Manufacturer:
FREESCALE
Quantity:
3 598
Part Number:
S9S12XS256J0CAL
Manufacturer:
FREESCALE
Quantity:
20 000
Serial Communication Interface (S12SCIV5)
410
Field
OR
NF
FE
PF
3
2
1
0
Overrun Flag — OR is set when software fails to read the SCI data register before the receive shift register
receives the next frame. The OR bit is set immediately after the stop bit has been completely received for the
second frame. The data in the shift register is lost, but the data already in the SCI data registers is not affected.
Clear OR by reading SCI status register 1 (SCISR1) with OR set and then reading SCI data register low
(SCIDRL).
0 No overrun
1 Overrun
Note: OR flag may read back as set when RDRF flag is clear. This may happen if the following sequence of
Noise Flag — NF is set when the SCI detects noise on the receiver input. NF bit is set during the same cycle as
the RDRF flag but does not get set in the case of an overrun. Clear NF by reading SCI status register 1(SCISR1),
and then reading SCI data register low (SCIDRL).
0 No noise
1 Noise
Framing Error Flag — FE is set when a logic 0 is accepted as the stop bit. FE bit is set during the same cycle
as the RDRF flag but does not get set in the case of an overrun. FE inhibits further data reception until it is
cleared. Clear FE by reading SCI status register 1 (SCISR1) with FE set and then reading the SCI data register
low (SCIDRL).
0 No framing error
1 Framing error
Parity Error Flag — PF is set when the parity enable bit (PE) is set and the parity of the received data does not
match the parity type bit (PT). PF bit is set during the same cycle as the RDRF flag but does not get set in the
case of an overrun. Clear PF by reading SCI status register 1 (SCISR1), and then reading SCI data register low
(SCIDRL).
0 No parity error
1 Parity error
events occurs:
Event 3 may be at exactly the same time as event 2 or any time after. When this happens, a dummy
SCIDRL read following event 4 will be required to clear the OR flag if further frames are to be received.
1. After the first frame is received, read status register SCISR1 (returns RDRF set and OR flag clear);
2. Receive second frame without reading the first frame in the data register (the second frame is not
3. Read data register SCIDRL (returns first frame and clears RDRF flag in the status register);
4. Read status register SCISR1 (returns RDRF clear and OR set).
received and OR flag is set);
Table 14-11. SCISR1 Field Descriptions (continued)
S12XS Family Reference Manual, Rev. 1.11
Description
Freescale Semiconductor

Related parts for S9S12XS256J0CAL