ATMEGA128A-AU Atmel, ATMEGA128A-AU Datasheet - Page 253

MCU 8BIT 128K ISP FLASH 64-TQFP

ATMEGA128A-AU

Manufacturer Part Number
ATMEGA128A-AU
Description
MCU 8BIT 128K ISP FLASH 64-TQFP
Manufacturer
Atmel
Series
AVR® ATmegar
Datasheets

Specifications of ATMEGA128A-AU

Core Processor
AVR
Core Size
8-Bit
Speed
16MHz
Connectivity
EBI/EMI, I²C, SPI, UART/USART
Peripherals
Brown-out Detect/Reset, POR, PWM, WDT
Number Of I /o
53
Program Memory Size
128KB (64K x 16)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
4K x 8
Voltage - Supply (vcc/vdd)
2.7 V ~ 5.5 V
Data Converters
A/D 8x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
64-TQFP, 64-VQFP
Processor Series
ATMEGA128x
Core
AVR8
Data Bus Width
8 bit
Data Ram Size
4 KB
Interface Type
JTAG
Maximum Clock Frequency
16 MHz
Number Of Programmable I/os
53
Number Of Timers
4
Operating Supply Voltage
2.7 V to 5.5 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
EWAVR, EWAVR-BL
Development Tools By Supplier
ATAVRDRAGON, ATSTK500, ATSTK600, ATAVRISP2, ATAVRONEKIT
Minimum Operating Temperature
- 40 C
On-chip Adc
10 bit, 8 Channel
On-chip Dac
10 bit, 8 Channel
Cpu Family
ATmega
Device Core
AVR
Device Core Size
8b
Frequency (max)
16MHz
Total Internal Ram Size
4KB
# I/os (max)
53
Number Of Timers - General Purpose
4
Operating Supply Voltage (typ)
3.3/5V
Operating Supply Voltage (max)
5.5V
Operating Supply Voltage (min)
2.7V
Instruction Set Architecture
RISC
Operating Temp Range
-40C to 85C
Operating Temperature Classification
Industrial
Mounting
Surface Mount
Pin Count
64
Package Type
TQFP
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Other names
Q4784435

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATMEGA128A-AU
Manufacturer:
ATMEL
Quantity:
9 000
Part Number:
ATMEGA128A-AU
Manufacturer:
ATMEL
Quantity:
3 480
Part Number:
ATMEGA128A-AU
Manufacturer:
ATMEL
Quantity:
3 512
Part Number:
ATMEGA128A-AU
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128A-AU
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
Company:
Part Number:
ATMEGA128A-AU
Quantity:
6 944
Part Number:
ATMEGA128A-AUR
Manufacturer:
ATMEL
Quantity:
3 000
Part Number:
ATMEGA128A-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATMEGA128A-AUR
Manufacturer:
ATMEL/爱特梅尔
Quantity:
20 000
24.5
24.6
8151H–AVR–02/11
Using the Boundary-scan Chain
Using the On-chip Debug System
As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting
JTAG instruction and using Data Registers, and some JTAG instructions may select certain
functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.
Note:
For detailed information on the JTAG specification, refer to the literature listed in
on page
A complete description of the Boundary-scan capabilities are given in the section
(JTAG) Boundary-scan” on page
As shown in
All read or modify/write operations needed for implementing the Debugger are done by applying
AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an I/O
memory mapped location which is part of the communication interface between the CPU and the
JTAG system.
The Break point Unit implements Break on Change of Program Flow, Single Step Break, two
Program Memory Breakpoints, and two combined break points. Together, the four break points
can be configured as either:
• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched
• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift
• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data
• A scan chain on the interface between the internal AVR CPU and the internal peripheral units
• Break point unit
• Communication interface between the CPU and JTAG system
• 4 single Program Memory break points
• 3 Single Program Memory break point + 1 single Data Memory break point
• 2 single Program Memory break points + 2 single Data Memory break points
state. The MSB of the instruction is shifted in when this state is left by setting TMS high.
While the instruction is shifted in from the TDI pin, the captured IR-state 0x01 is shifted out on
the TDO pin. The JTAG Instruction selects a particular Data Register as path between TDI
and TDO and controls the circuitry surrounding the selected Data Register.
onto the parallel output from the Shift Register path in the Update-IR state. The Exit-IR,
Pause-IR, and Exit2-IR states are only used for navigating the state machine.
Data Register – Shift-DR state. While in this state, upload the selected Data Register
(selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI input
at the rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must be
held low during input of all bits except the MSB. The MSB of the data is shifted in when this
state is left by setting TMS high. While the Data Register is shifted in from the TDI pin, the
parallel inputs to the Data Register captured in the Capture-DR state is shifted out on the
TDO pin.
Register has a latched parallel-output, the latching takes place in the Update-DR state. The
Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.
Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always be
entered by holding TMS high for 5 TCK clock periods.
255.
Figure
24-1, the hardware support for On-chip Debugging consists mainly of
255.
ATmega128A
“Bibliography”
“IEEE 1149.1
253

Related parts for ATMEGA128A-AU