LPC1759FBD80,551 NXP Semiconductors, LPC1759FBD80,551 Datasheet - Page 144

IC ARM CORTEX MCU 512K 80-LQFP

LPC1759FBD80,551

Manufacturer Part Number
LPC1759FBD80,551
Description
IC ARM CORTEX MCU 512K 80-LQFP
Manufacturer
NXP Semiconductors
Series
LPC17xxr

Specifications of LPC1759FBD80,551

Program Memory Type
FLASH
Program Memory Size
512KB (512K x 8)
Package / Case
80-LQFP
Core Processor
ARM® Cortex-M3™
Core Size
32-Bit
Speed
120MHz
Connectivity
CAN, I²C, IrDA, Microwire, SPI, SSI, SSP, UART/USART, USB OTG
Peripherals
Brown-out Detect/Reset, DMA, I²S, Motor Control PWM, POR, PWM, WDT
Number Of I /o
52
Ram Size
64K x 8
Voltage - Supply (vcc/vdd)
2.4 V ~ 3.6 V
Data Converters
A/D 6x12b, D/A 1x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Processor Series
LPC17
Core
ARM Cortex M3
Data Bus Width
32 bit
Data Ram Size
64 KB
Interface Type
Ethernet, USB, OTG, CAN
Maximum Clock Frequency
120 MHz
Number Of Programmable I/os
52
Number Of Timers
4
Operating Supply Voltage
3.3 V
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
3rd Party Development Tools
MDK-ARM, RL-ARM, ULINK2
Minimum Operating Temperature
- 40 C
On-chip Adc
12 bit, 6 Channel
On-chip Dac
10 bit
Package
80LQFP
Device Core
ARM Cortex M3
Family Name
LPC17xx
Maximum Speed
120 MHz
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
For Use With
622-1005 - USB IN-CIRCUIT PROG ARM7 LPC2K
Eeprom Size
-
Lead Free Status / Rohs Status
Lead free / RoHS Compliant
Other names
568-4968
935290523551

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
LPC1759FBD80,551
Manufacturer:
LT
Quantity:
375
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Part Number:
LPC1759FBD80,551
Manufacturer:
NXP/恩智浦
Quantity:
20 000
NXP Semiconductors
10.5 DMA engine functions
10.6 Overview of DMA operation
UM10360
User manual
The Ethernet block is designed to provide optimized performance via DMA hardware
acceleration. Independent scatter/gather DMA engines connected to the AHB bus off-load
many data transfers from the CPU.
Descriptors, which are stored in memory, contain information about fragments of incoming
or outgoing Ethernet frames. A fragment may be an entire frame or a much smaller
amount of data. Each descriptor contains a pointer to a memory buffer that holds data
associated with a fragment, the size of the fragment buffer, and details of how the
fragment will be transmitted or received.
Descriptors are stored in arrays in memory, which are located by pointer registers in the
Ethernet block. Other registers determine the size of the arrays, point to the next
descriptor in each array that will be used by the DMA engine, and point to the next
descriptor in each array that will be used by the Ethernet device driver.
The DMA engine makes use of a Receive descriptor array and a Transmit descriptor array
in memory. All or part of an Ethernet frame may be contained in a memory buffer
associated with a descriptor. When transmitting, the transmit DMA engine uses as many
descriptors as needed (one or more) to obtain (gather) all of the parts of a frame, and
sends them out in sequence. When receiving, the receive DMA engine also uses as many
descriptors as needed (one or more) to find places to store (scatter) all of the data in the
received frame.
The base address registers for the descriptor array, registers indicating the number of
descriptor array entries, and descriptor array input/output pointers are contained in the
Ethernet block. The descriptor entries and all transmit and receive packet data are stored
in memory which is not a part of the Ethernet block. The descriptor entries tell where
related frame data is stored in memory, certain aspects of how the data is handled, and
the result status of each Ethernet transaction.
– The transmit DMA manager which reads descriptors and data from memory and
– The transmit retry module handling Ethernet retry and abort situations.
– The transmit flow control module which can insert Ethernet pause frames.
The receive data path, including:
– The receive DMA manager which reads descriptors from memory and writes data
– The Ethernet MAC which detects frame types by parsing part of the frame header.
– The receive filter which can filter out certain Ethernet frames by applying different
– The receive buffer implementing a delay for receive frames to allow the filter to
writes status to memory.
and status to memory.
filtering schemes.
filter out certain frames before storing them to memory.
All information provided in this document is subject to legal disclaimers.
Rev. 2 — 19 August 2010
Chapter 10: LPC17xx Ethernet
UM10360
© NXP B.V. 2010. All rights reserved.
144 of 840

Related parts for LPC1759FBD80,551