LPC1114FHN33/203,5 NXP Semiconductors, LPC1114FHN33/203,5 Datasheet - Page 460

no-image

LPC1114FHN33/203,5

Manufacturer Part Number
LPC1114FHN33/203,5
Description
ARM Microcontrollers - MCU Cortex-M0 32 kB Fl 8 kB SRAM
Manufacturer
NXP Semiconductors
Datasheet

Specifications of LPC1114FHN33/203,5

Rohs
yes
Core
ARM Cortex M0
Processor Series
LPC1114
Data Bus Width
32 bit
Maximum Clock Frequency
50 MHz
Program Memory Size
32 KB
Data Ram Size
8 KB
On-chip Adc
Yes
Operating Supply Voltage
1.8 V to 3.6 V
Operating Temperature Range
- 65 C to + 150 C
Package / Case
HVQFN-33
Mounting Style
SMD/SMT
Factory Pack Quantity
260
NXP Semiconductors
UM10398
User manual
28.4.3.6.1 Exception entry
28.4.3.6 Exception entry and return
Assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that
IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is
processed before IRQ[0].
If multiple pending exceptions have the same priority, the pending exception with the
lowest exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are
pending and have the same priority, then IRQ[0] is processed before IRQ[1].
When the processor is executing an exception handler, the exception handler is
preempted if a higher priority exception occurs. If an exception occurs with the same
priority as the exception being handled, the handler is not preempted, irrespective of the
exception number. However, the status of the new interrupt changes to pending.
Descriptions of exception handling use the following terms:
Preemption — When the processor is executing an exception handler, an exception can
preempt the exception handler if its priority is higher than the priority of the exception
being handled.
When one exception preempts another, the exceptions are called nested exceptions. See
Section 28–28.4.3.6.1
Return — This occurs when the exception handler is completed, and:
The processor pops the stack and restores the processor state to the state it had before
the interrupt occurred. See
Tail-chaining — This mechanism speeds up exception servicing. On completion of an
exception handler, if there is a pending exception that meets the requirements for
exception entry, the stack pop is skipped and control transfers to the new exception
handler.
Late-arriving — This mechanism speeds up preemption. If a higher priority exception
occurs during state saving for a previous exception, the processor switches to handle the
higher priority exception and initiates the vector fetch for that exception. State saving is
not affected by late arrival because the state saved would be the same for both
exceptions. On return from the exception handler of the late-arriving exception, the normal
tail-chaining rules apply.
Exception entry occurs when there is a pending exception with sufficient priority and
either:
When one exception preempts another, the exceptions are nested.
there is no pending exception with sufficient priority to be serviced
the completed exception handler was not handling a late-arriving exception.
the processor is in Thread mode
the new exception is of higher priority than the exception being handled, in which case
the new exception preempts the exception being handled.
Chapter 28: LPC111x/LPC11Cxx Appendix: ARM Cortex-M0 reference
All information provided in this document is subject to legal disclaimers.
Rev. 12 — 24 September 2012
for more information.
Section 28–28.4.3.6.2
for more information.
UM10398
© NXP B.V. 2012. All rights reserved.
460 of 538

Related parts for LPC1114FHN33/203,5