ATA6613-EK Atmel, ATA6613-EK Datasheet - Page 268

no-image

ATA6613-EK

Manufacturer Part Number
ATA6613-EK
Description
BOARD DEMO LIN-MCM FOR ATA6613
Manufacturer
Atmel
Datasheets

Specifications of ATA6613-EK

Main Purpose
Interface, LIN + MCU
Embedded
Yes, MCU, 8-Bit
Utilized Ic / Part
ATA6613
Primary Attributes
LIN-SBC (System-Basis-Chip) Transceiver, LIN 2.0, Voltage Regulator, Window Watchdog
Secondary Attributes
16 kB Flash, 4 Power Modes: Pre-Normal, Normal, Sleep, Silent, 48-QFN
Lead Free Status / RoHS Status
Contains lead / RoHS non-compliant
6.21.3
268
Atmel ATA6612/ATA6613
Prescaling and Conversion Timing
Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as
soon as the ongoing conversion has finished. The ADC then operates in Free Running mode,
constantly sampling and updating the ADC Data Register. The first conversion must be started
by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform suc-
cessive conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.
If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA
to one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will
be read as one during a conversion, independently of how the conversion was started.
Figure 6-102. ADC Prescaler
By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 200kHz to get maximum resolution. If a lower resolution than 10bits is needed, the
input clock frequency to the ADC can be higher than 200kHz to get a higher sample rate.
The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN
bit in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is contin-
uously reset when ADEN is low.
When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle.
A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is
switched on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the ana-
log circuitry.
The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal con-
version and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conver-
sion mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a
new conversion will be initiated on the first rising ADC clock edge.
ADEN
START
ADPS0
ADPS1
ADPS2
CK
Reset
7-BIT ADC PRESCALER
ADC CLOCK SOURCE
9111H–AUTO–01/11

Related parts for ATA6613-EK