PNX1501E NXP Semiconductors, PNX1501E Datasheet - Page 744

no-image

PNX1501E

Manufacturer Part Number
PNX1501E
Description
Digital Signal Processors & Controllers (DSP, DSC) MEDIA PROCESSOR PNX15XX/266MHZ
Manufacturer
NXP Semiconductors
Datasheet

Specifications of PNX1501E

Product
DSPs
Maximum Operating Temperature
+ 85 C
Mounting Style
SMD/SMT
Package / Case
SOT-795
Minimum Operating Temperature
0 C
Lead Free Status / Rohs Status
 Details
Other names
PNX1501E,557

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
PNX1501E
Manufacturer:
PHILIPS
Quantity:
5
Part Number:
PNX1501E,557
Manufacturer:
NXP Semiconductors
Quantity:
10 000
Part Number:
PNX1501E/G
Manufacturer:
NXP Semiconductors
Quantity:
135
Part Number:
PNX1501E/G
Manufacturer:
MICROCHIP
Quantity:
12 000
Part Number:
PNX1501E/G
Manufacturer:
NXP/恩智浦
Quantity:
20 000
Philips Semiconductors
Volume 1 of 1
12NC 9397 750 14321
Product data sheet
3.1.1 Handshaking and Communication Protocol
The following describes the mechanism for transferring data via JTAG.
Transfer from Debug Front-End to Debug Monitor
The debugger front-end running on a host transfers data to a debug monitor via the
TM_DBG_DATA_IN register. It must poll the TM_DBG_CTRL2.ifull bit to check if the
TM_DBG_DATA_IN register can be written to. If the TM_DBG_CTRL2.ifull bit is clear,
the front-end may scan data into the TM_DBG_DATA_IFULL_IN register.
Note that data and control bits may be shifted in with SEL_IFULL_IN instruction and
the bit shifted into TM_DBG_CTRL2.ifull register must be 1. This action triggers an
interrupt. The debug monitor must copy the data from TM_DBG_DATA_IN register
into its private area when servicing the interrupt and then clear the
TM_DBG_CTRL2.ifull bit. This allows the JTAG interface module to write the next
piece of data to the TM_DBG_DATA_IN register.
Transfer from Monitor to Front-End
The monitor running on TM3260 must check if TM_DBG_CTRL1.ofull is clear and if
so, it can write data to TM_DBG_DATA_OUT. After that, the monitor must set the
TM_DBG_CTRL1.ofull bit. The debugger front-end polls the TM_DBG_CTRL1.ofull
bit. When set, it can scan out the TM_DBG_DATA_OUT register and clear the
TM_DBG_CTRL1.ofull bit. Since TM_DBG_DATA_OUT is read-only via JTAG, the
update action at the end of scan out has no effect on TM_DBG_DATA_ OUT. The
TM_DBG_CTRL1.ofull bit however, must be cleared by shifting in the value 1.
Controller States
In the power on reset state, TM_DBG_CTRL2.ifull, TM_DBG_CTRL1.ofull and
TM_DBG_CTRL1.sleepless bits are cleared.
Example of Data Transfer via JTAG
Scanning in a 5-bit instruction will take 12 TCK cycles from the Run-Test/Idle state:
Likewise, scanning in a 32-bit data register will take 38 TCK cycles, and transferring
an 8-bit TM_DBG_CTRL data register will take 14 TCK cycles from Idle state.
However, if a data transfer follows instruction transfer, then the transition to DR scan
stage can be done without going through Idle state, thereby saving 1 cycle.
4 cycles to reach Shift-IR state
5 cycles for actual shifting in
1 cycle to exit1-IR state
1 cycle to update-IR state,
1 cycle back to Run-Test/Idle state.
Rev. 2 — 1 December 2004
© Koninklijke Philips Electronics N.V. 2002-2003-2004. All rights reserved.
Chapter 24: TM3260 Debug
PNX15xx Series
24-5

Related parts for PNX1501E