MC9S12P32CFT Freescale Semiconductor, MC9S12P32CFT Datasheet - Page 349

no-image

MC9S12P32CFT

Manufacturer Part Number
MC9S12P32CFT
Description
MCU 16BIT 32K FLASH 48-QFN
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of MC9S12P32CFT

Core Processor
HCS12
Core Size
16-Bit
Speed
32MHz
Connectivity
CAN, SCI, SPI
Peripherals
LVD, POR, PWM, WDT
Number Of I /o
34
Program Memory Size
32KB (32K x 8)
Program Memory Type
FLASH
Eeprom Size
4K x 8
Ram Size
2K x 8
Voltage - Supply (vcc/vdd)
1.72 V ~ 5.5 V
Data Converters
A/D 10x12b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 85°C
Package / Case
48-QFN Exposed Pad
Processor Series
S12P
Core
HCS12
3rd Party Development Tools
EWHCS12
Development Tools By Supplier
KIT33812ECUEVME, DEMO9S12PFAME
Package
48QFN EP
Family Name
HCS12
Maximum Speed
32 MHz
Operating Supply Voltage
3.3|5 V
Data Bus Width
16 Bit
Interface Type
CAN/SCI/SPI
On-chip Adc
10-chx12-bit
Number Of Timers
8
Lead Free Status / RoHS Status
Lead free / RoHS Compliant
Read: anytime
Write: anytime
10.3.2.14 PWM Channel Duty Registers (PWMDTYx)
There is a dedicated duty register for each channel. The value in this register determines the duty of the
associated PWM channel. The duty value is compared to the counter and if it is equal to the counter value
a match occurs and the output changes state.
The duty registers for each channel are double buffered so that if they change while the channel is enabled,
the change will NOT take effect until one of the following occurs:
In this way, the output of the PWM will always be either the old duty waveform or the new duty waveform,
not some variation in between. If the channel is not enabled, then writes to the duty register will go directly
to the latches as well as the buffer.
Reference
To calculate the output duty cycle (high time as a % of period) for a particular channel:
Freescale Semiconductor
Module Base + 0x0017
Reset
W
R
The effective period ends
The counter is written (counter resets to 0x0000)
The channel is disabled
Polarity = 0 (PPOLx = 0)
Polarity = 1 (PPOLx = 1)
Duty cycle = [(PWMPERx PWMDTYx)/PWMPERx] * 100%
Duty cycle = [PWMDTYx / PWMPERx] * 100%
Section 10.4.2.3, “PWM Period and Duty,”
Bit 7
0
7
Reads of this register return the most recent value written. Reads do not
necessarily return the value of the currently active duty due to the double
buffering scheme.
Depending on the polarity bit, the duty registers will contain the count of
either the high time or the low time. If the polarity bit is 1, the output starts
high and then goes low when the duty count is reached, so the duty registers
contain a count of the high time. If the polarity bit is 0, the output starts low
and then goes high when the duty count is reached, so the duty registers
contain a count of the low time.
Figure 10-26. PWM Channel Period Registers (PWMPER5)
6
0
6
S12P-Family Reference Manual, Rev. 1.13
5
0
5
NOTE
NOTE
4
0
4
for more information.
Pulse-Width Modulator (PWM8B6CV1) Block Description
3
0
3
2
0
2
1
0
1
Bit 0
0
0
349

Related parts for MC9S12P32CFT