S9S12HZ128J3VAL Freescale Semiconductor, S9S12HZ128J3VAL Datasheet - Page 401

IC MCU FLASH 112-LQFP

S9S12HZ128J3VAL

Manufacturer Part Number
S9S12HZ128J3VAL
Description
IC MCU FLASH 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of S9S12HZ128J3VAL

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
CAN, EBI/EMI, I²C, SCI, SPI
Peripherals
LCD, Motor control PWM, POR, PWM, WDT
Number Of I /o
91
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
6K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 2.75 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 105°C
Package / Case
112-LQFP
Processor Series
S12HY
Core
HCS12X
Data Bus Width
16 bit
Data Ram Size
6 KB
Interface Type
CAN, I2C, SCI, SPI
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
85
Number Of Timers
1
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S12HZ128J3VAL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S12HZ128J3VAL
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
S9S12HZ128J3VAL(MC9S12HZ128VAL
Manufacturer:
FREESCALE
Quantity:
20 000
13.4.1
This module provides the capability of transmitting narrow pulses to an IR LED and receiving narrow
pulses and transforming them to serial bits, which are sent to the SCI. The IrDA physical layer
specification defines a half-duplex infrared communication link for exchange data. The full standard
includes data rates up to 16 Mbits/s. This design covers only data rates between 2.4 kbits/s and
115.2 kbits/s.
The infrared submodule consists of two major blocks: the transmit encoder and the receive decoder. The
SCI transmits serial bits of data which are encoded by the infrared submodule to transmit a narrow pulse
for every 0 bit. No pulse is transmitted for every 1 bit. When receiving data, the IR pulses should be
detected using an IR photo diode and transformed to CMOS levels by the IR receive decoder (external
from the MCU). The narrow pulses are then stretched by the infrared submodule to get back to a serial bit
stream to be received by the SCI. The polarity of transmitted pulses and expected receive pulses can be
inverted so that a direct connection can be made to external IrDA transceiver modules that uses active low
pulses.
The infrared submodule receives its clock sources from the SCI. One of these two clocks are selected in
the infrared submodule in order to generate either 3/16, 1/16, 1/32, or 1/4 narrow pulses during
transmission. The infrared block receives two clock sources from the SCI, R16XCLK, and R32XCLK,
which are configured to generate the narrow pulse width during transmission. The R16XCLK and
R32XCLK are internal clocks with frequencies 16 and 32 times the baud rate respectively. Both
R16XCLK and R32XCLK clocks are used for transmitting data. The receive decoder uses only the
R16XCLK clock.
13.4.1.1
The infrared transmit encoder converts serial bits of data from transmit shift register to the TXD pin. A
narrow pulse is transmitted for a 0 bit and no pulse for a 1 bit. The narrow pulse is sent in the middle of
the bit with a duration of 1/32, 1/16, 3/16, or 1/4 of a bit time. A narrow high pulse is transmitted for a 0 bit
when TXPOL is cleared, while a narrow low pulse is transmitted for a 0 bit when TXPOL is set.
13.4.1.2
The infrared receive block converts data from the RXD pin to the receive shift register. A narrow pulse is
expected for each 0 received and no pulse is expected for each 1 received. A narrow high pulse is expected
for a 0 bit when RXPOL is cleared, while a narrow low pulse is expected for a 0 bit when RXPOL is set.
This receive decoder meets the edge jitter requirement as defined by the IrDA serial infrared physical layer
specification.
13.4.2
The SCI uses the standard NRZ mark/space data format. When Infrared is enabled, the SCI uses RZI data
format where 0s are represented by light pulses and 1s remain low. See
Freescale Semiconductor
Infrared Interface Submodule
Data Format
Infrared Transmit Encoder
Infrared Receive Decoder
MC9S12HZ256 Data Sheet, Rev. 2.05
Chapter 13 Serial Communication Interface (SCIV4)
Figure
13-12.
401

Related parts for S9S12HZ128J3VAL