S9S12HZ128J3VAL Freescale Semiconductor, S9S12HZ128J3VAL Datasheet - Page 470

IC MCU FLASH 112-LQFP

S9S12HZ128J3VAL

Manufacturer Part Number
S9S12HZ128J3VAL
Description
IC MCU FLASH 112-LQFP
Manufacturer
Freescale Semiconductor
Series
HCS12r
Datasheet

Specifications of S9S12HZ128J3VAL

Core Processor
HCS12
Core Size
16-Bit
Speed
25MHz
Connectivity
CAN, EBI/EMI, I²C, SCI, SPI
Peripherals
LCD, Motor control PWM, POR, PWM, WDT
Number Of I /o
91
Program Memory Size
128KB (128K x 8)
Program Memory Type
FLASH
Eeprom Size
2K x 8
Ram Size
6K x 8
Voltage - Supply (vcc/vdd)
2.35 V ~ 2.75 V
Data Converters
A/D 16x10b
Oscillator Type
Internal
Operating Temperature
-40°C ~ 105°C
Package / Case
112-LQFP
Processor Series
S12HY
Core
HCS12X
Data Bus Width
16 bit
Data Ram Size
6 KB
Interface Type
CAN, I2C, SCI, SPI
Maximum Clock Frequency
50 MHz
Number Of Programmable I/os
85
Number Of Timers
1
Operating Supply Voltage
4.5 V to 5.5 V
Maximum Operating Temperature
+ 105 C
Mounting Style
SMD/SMT
Lead Free Status / RoHS Status
Lead free / RoHS Compliant

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
S9S12HZ128J3VAL
Manufacturer:
Freescale Semiconductor
Quantity:
10 000
Part Number:
S9S12HZ128J3VAL
Manufacturer:
FREESCALE
Quantity:
20 000
Part Number:
S9S12HZ128J3VAL(MC9S12HZ128VAL
Manufacturer:
FREESCALE
Quantity:
20 000
Chapter 15 Pulse-Width Modulator (PWM8B6CV1)
Shown below is the output waveform generated.
15.4.2.6
For center aligned output mode selection, set the CAEx bit (CAEx = 1) in the PWMCAE register and the
corresponding PWM output will be center aligned.
The 8-bit counter operates as an up/down counter in this mode and is set to up whenever the counter is
equal to 0x0000. The counter compares to two registers, a duty register and a period register as shown in
the block diagram in
changes state causing the PWM waveform to also change state. A match between the PWM counter and
the period register changes the counter direction from an up-count to a down-count. When the PWM
counter decrements and matches the duty register again, the output flip-flop changes state causing the
PWM output to also change state. When the PWM counter decrements and reaches 0, the counter direction
changes from a down-count back to an up-count and a load from the double buffer period and duty
registers to the associated registers is performed as described in
Duty.”
effective period is PWMPERx*2.
470
The counter counts from 0 up to the value in the period register and then back down to 0. Thus the
PPOLx = 0
PPOLx = 1
Center Aligned Outputs
Changing the PWM output mode from left aligned output to center aligned
output (or vice versa) while channels are operating can cause irregularities
in the PWM output. It is recommended to program the output mode before
enabling the PWM channel.
Figure
E = 100 ns
Figure 15-37. PWM Left Aligned Output Example Waveform
Figure 15-38. PWM Center Aligned Output Waveform
15-35. When the PWM counter matches the duty register the output flip-flop
PWMDTYx
MC9S12HZ256 Data Sheet, Rev. 2.05
PWMPERx
PERIOD = 400 ns
DUTY CYCLE = 75%
NOTE
Period = PWMPERx*2
Section 15.4.2.3, “PWM Period and
PWMPERx
PWMDTYx
Freescale Semiconductor

Related parts for S9S12HZ128J3VAL