ATUC128L4U Atmel Corporation, ATUC128L4U Datasheet - Page 253

no-image

ATUC128L4U

Manufacturer Part Number
ATUC128L4U
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATUC128L4U

Flash (kbytes)
128 Kbytes
Pin Count
48
Max. Operating Frequency
50 MHz
Cpu
32-bit AVR
# Of Touch Channels
17
Hardware Qtouch Acquisition
Yes
Max I/o Pins
36
Ext Interrupts
36
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
1
Twi (i2c)
2
Uart
4
Lin
4
Ssc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
12
Adc Speed (ksps)
460
Analog Comparators
8
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.62 to 3.6
Operating Voltage (vcc)
1.62 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
6
Output Compare Channels
18
Input Capture Channels
12
Pwm Channels
35
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATUC128L4U-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATUC128L4U-AUT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATUC128L4U-U
Manufacturer:
ATMEL
Quantity:
3 006
14.5.4.8
14.5.4.9
32142A–12/2011
Wake from sleep modes
Accuracy
DFLLIF can provide a clock with the energy spread in the frequency domain. This is done by
adding or subtracting values from the FINE value. SSG is enabled by writing a one to the Enable
bit (EN) in the DFLLn Spread Spectrum Generator Control Register ( DFLLnSSG).
A generic clock sets the rate at which the SSG changes the frequency of the DFLL clock to gen-
erate a spread spectrum (CLK_DFLLIF_DITHER). This is the same clock used by the dithering
mechanism. The frequency of this clock should be higher than f
can lock. Please refer to the Generic clocks section for details.
Optionally, the clock ticks can be qualified by a Pseudo Random Binary Sequence (PRBS) if the
PRBS bit in DFLLnSSG is one. This reduces the modulation effect of CLK_DFLLIF_DITHER fre-
quency onto f
The amplitude of the frequency variation can be selected by setting the SSG Amplitude field
(AMPLITUDE) in DFLLnSSG. If AMPLITUDE is zero the SSG will toggle on the LSB of the FINE
value. If AMPLITUDE is one the SSG will add the sequence {1,-1, 0} to FINE.
The step size of the SSG is selected by writing to the SSG Step Size field (STEPSIZE) in
DFLLnSSG. STEPSIZE equal to zero or one will result in a step size equal to one. If the step
size is set to n, the output value from the SSG will be incremented/decremented by n on every
tick of the source clock.
The Spread Spectrum Generator is available in both open and closed loop mode.
When spread spectrum is enabled in closed loop mode, and the AMPLITUDE is high, an over-
flow/underflow in FINE is more likely to occur.
Figure 14-5. Spread Spectrum Generator Block Diagram.
The DFLLIF may optionally reset its lock bits when waking from a sleep mode which disables the
DFLL. This is configured by the Lose Lock After Wake (LLAW) bit in DFLLnCONF register. If
DFLLnCONF.LLAW is written to zero the DFLL will be re-enabled and start running with the
same configuration as before going to sleep even if the reference clock is not available. The
locks will not be lost. When the reference clock has restarted, the FINE tracking will quickly com-
pensate for any frequency drift during sleep. If a one is written to DFLLnCONF.LLAW before
going to a sleep mode where the DFLL is turned off, the DFLLIF will lose all its locks when wak-
ing up, and needs to regain these through the full lock sequence.
There are mainly three factors that decide the accuracy of the f
obtain maximum accuracy when fine lock is achieved.
CLK_DFLLIF_DITHER
DFLL
.
Binary Sequence
Pseudorandom
PRBS
1
0
ATUC64/128/256L3/4U
Spread Spectrum
AMPLITUDE,
STEPSIZE
Generator
FINE
REF
DFLL
to ensure that the DFLLIF
. These can be tuned to
9
To DFLL
253

Related parts for ATUC128L4U