ATUC128L4U Atmel Corporation, ATUC128L4U Datasheet - Page 31

no-image

ATUC128L4U

Manufacturer Part Number
ATUC128L4U
Description
Manufacturer
Atmel Corporation
Datasheets

Specifications of ATUC128L4U

Flash (kbytes)
128 Kbytes
Pin Count
48
Max. Operating Frequency
50 MHz
Cpu
32-bit AVR
# Of Touch Channels
17
Hardware Qtouch Acquisition
Yes
Max I/o Pins
36
Ext Interrupts
36
Usb Transceiver
1
Usb Speed
Full Speed
Usb Interface
Device
Spi
1
Twi (i2c)
2
Uart
4
Lin
4
Ssc
1
Graphic Lcd
No
Video Decoder
No
Camera Interface
No
Adc Channels
8
Adc Resolution (bits)
12
Adc Speed (ksps)
460
Analog Comparators
8
Resistive Touch Screen
No
Temp. Sensor
Yes
Crypto Engine
No
Sram (kbytes)
16
Self Program Memory
YES
Dram Memory
No
Nand Interface
No
Picopower
Yes
Temp. Range (deg C)
-40 to 85
I/o Supply Class
1.62 to 3.6
Operating Voltage (vcc)
1.62 to 3.6
Fpu
No
Mpu / Mmu
Yes / No
Timers
6
Output Compare Channels
18
Input Capture Channels
12
Pwm Channels
35
32khz Rtc
Yes
Calibrated Rc Oscillator
Yes

Available stocks

Company
Part Number
Manufacturer
Quantity
Price
Part Number:
ATUC128L4U-AUR
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATUC128L4U-AUT
Manufacturer:
Atmel
Quantity:
10 000
Part Number:
ATUC128L4U-U
Manufacturer:
ATMEL
Quantity:
3 006
4.5.1
4.5.2
32142A–12/2011
System Stack Issues
Exceptions and Interrupt Requests
relative to EVBA. The autovector offset has 14 address bits, giving an offset of maximum 16384
bytes. The target address of the event handler is calculated as (EVBA | event_handler_offset),
not (EVBA + event_handler_offset), so EVBA and exception code segments must be set up
appropriately. The same mechanisms are used to service all different types of events, including
interrupt requests, yielding a uniform event handling scheme.
An interrupt controller does the priority handling of the interrupts and provides the autovector off-
set to the CPU.
Event handling in AVR32UC uses the system stack pointed to by the system stack pointer,
SP_SYS, for pushing and popping R8-R12, LR, status register, and return address. Since event
code may be timing-critical, SP_SYS should point to memory addresses in the IRAM section,
since the timing of accesses to this memory section is both fast and deterministic.
The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:
The execution of the event handler routine then continues from the effective address calculated.
The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.
1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and
2. When a request is accepted, the Status Register and Program Counter of the current
3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.
context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.
ter file bank is selected. The address of the event handler, as shown in
page
34, is loaded into the Program Counter.
ATUC64/128/256L3/4U
Table 4-4 on
31

Related parts for ATUC128L4U